// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/ir/ipu/infer_shape_pass.h" #include "paddle/fluid/framework/ir/graph_helper.h" #include "paddle/fluid/framework/ir/pass_tester_helper.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/variable_helper.h" #include "paddle/fluid/platform/device/ipu/ipu_backend.h" #include "paddle/phi/core/ddim.h" namespace paddle { namespace framework { namespace ir { void InferShapePass::ApplyImpl(ir::Graph* graph) const { VLOG(10) << "enter InferShapePass::ApplyImpl"; VLOG(10) << "Raw Graph: "; VLOG(10) << DebugString(graph); // Make batch_size fixed bool need_infer_shape = false; auto ipu_backend = platform::ipu::IpuBackend::GetInstance(); auto micro_batch_size = ipu_backend->GetIpuStrategy()->micro_batch_size; auto feed_list = Get>("feed_list"); for (auto node : graph->Nodes()) { if (!node->IsVar()) { continue; } bool is_feed = std::find(feed_list.begin(), feed_list.end(), node->Name()) != feed_list.end(); if (is_feed) { auto input_shape = node->Var()->GetShape(); if (input_shape[0] <= -1) { input_shape[0] = micro_batch_size; node->Var()->SetShape(input_shape); need_infer_shape = true; } // int64->int32 if (node->Var()->GetDataType() == proto::VarType::INT64) { node->Var()->SetDataType(proto::VarType::INT32); } // float64->float32 if (node->Var()->GetDataType() == proto::VarType::FP64) { node->Var()->SetDataType(proto::VarType::FP32); } } } // temp scope for shape inference if (need_infer_shape) { std::shared_ptr scope( new paddle::framework::Scope()); for (auto node : graph->Nodes()) { if (!node->IsVar()) { continue; } auto var_desc = node->Var(); auto* ptr = scope->Var(var_desc->Name()); paddle::framework::InitializeVariable(ptr, var_desc->GetType()); auto tensor = ptr->GetMutable(); tensor->Resize(phi::make_ddim(var_desc->GetShape())); } // infer shape auto nodes = ir::TopologySortOperations(*graph); for (auto node : nodes) { VLOG(10) << "InferShapePass: Infer shape for Op (" << node->Name() << ")"; auto op_desc = node->Op(); if (op_desc->Type() == "popart_optimizer") { continue; } auto op = paddle::framework::OpRegistry::CreateOp(*op_desc); paddle::framework::RuntimeContext ctx( op->Inputs(), op->Outputs(), *scope); op->RuntimeInferShape(*scope, paddle::platform::CPUPlace(), ctx); for (auto it = ctx.outputs.begin(); it != ctx.outputs.end(); it++) { for (int i = 0; i < it->second.size(); i++) { auto output_name = op_desc->Output(it->first)[i]; auto dim = it->second[i]->GetMutable()->dims(); auto new_shape = phi::vectorize(dim); for (auto output_node : node->outputs) { if (output_node->Name() == output_name) { output_node->Var()->SetShape(new_shape); if (VLOG_IS_ON(10)) { std::ostringstream sout; sout << "InferShapePass: output[" << output_node->Name() << "], infer shape:["; for (auto s : new_shape) { sout << std::to_string(s) << ", "; } sout << "]"; VLOG(10) << sout.str(); } } } } } VLOG(10) << "InferShapePass: Infer shape for Op (" << node->Name() << ") finished"; } // release the temp scope scope.reset(); } VLOG(10) << "Post Graph: "; VLOG(10) << DebugString(graph); VLOG(10) << "leave InferShapePass::ApplyImpl"; } } // namespace ir } // namespace framework } // namespace paddle REGISTER_PASS(infer_shape_pass, paddle::framework::ir::InferShapePass) .RequirePassAttr("feed_list");