// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/layout_autotune.h" #include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/imperative/layout_transformer.h" #include "paddle/phi/backends/gpu/gpu_info.h" #include "paddle/phi/core/enforce.h" #include "paddle/phi/core/errors.h" namespace paddle { namespace imperative { bool LayoutAutoTune::UseLayoutAutoTune() const { #if defined(PADDLE_WITH_CUDA) if (!phi::backends::gpu::TensorCoreAvailable()) { return false; } else { return use_layout_autotune_; } #else return false; #endif } LayoutAutoTune::LayoutAutoTune() { const auto& op_info = paddle::framework::OpInfoMap::Instance().map(); for (auto it = op_info.begin(); it != op_info.end(); it++) { // only record forwrd operators if (it->first.find("_grad") != std::string::npos) { continue; } // some normalization operators such as instance_norm and layer_norm // do not have data_format attr, but are layout sensitive. if (it->first.find("norm") != std::string::npos) { layout_agnostic_ops_.emplace(it->first); continue; } auto* attr_checker = it->second.Checker(); if (attr_checker) { auto attrs = attr_checker->GetDefaultAttrMap(); if (attrs.find("data_format") != attrs.end() || attrs.find("data_layout") != attrs.end()) { VLOG(4) << "Heavily layout sensitive OP: " << it->first; heavily_layout_sensitive_ops_.emplace(it->first); continue; } // Attribute name is fuzzy matched, such as start and start_axis. bool layout_agnostic = true; for (auto& attr : attrs) { auto attr_name = attr.first; VLOG(6) << "OP: " << it->first << " Attr Name: " << attr_name; if (attr_name.find("axis") != std::string::npos || attr_name.find("axes") != std::string::npos || attr_name.find("dim") != std::string::npos || attr_name.find("start") != std::string::npos || attr_name.find("end") != std::string::npos) { VLOG(4) << "Lightly layout sensitive OP: " << it->first; layout_agnostic = false; lightly_layout_sensitive_ops_.emplace(it->first); break; } } if (layout_agnostic) { VLOG(4) << "Layout agnostic_ops: " << it->first; layout_agnostic_ops_.emplace(it->first); } } } VLOG(3) << "The number of layout agnostic OPs: " << layout_agnostic_ops_.size() << ", heavily layout sensitive OPs: " << heavily_layout_sensitive_ops_.size() << ", lightly layout sensitive OPs: " << lightly_layout_sensitive_ops_.size(); } template paddle::imperative::NameVarMap AutoTuneLayout( const std::string& op_type, const paddle::imperative::NameVarMap& ins, const paddle::imperative::NameVarMap& outs, paddle::framework::AttributeMap* attrs, const std::shared_ptr& tracer) { if (!LayoutAutoTune::Instance().UseLayoutAutoTune()) { return ins; } // When layout autotuning is enabled, the tuner will check the desired layout. // (1) If the desired layout is undefined, and there is no convolutional // layers, layout optimization is unnecessary. Otherwise, the desired layout // will be set to the best layout only when these is a convolutional layer // with // NCHW-Layout and the TensorCore is available. // (2) If the desired layout is defined, run the transposer. if (LayoutAutoTune::Instance().GetDesiredLayout() == DataLayout::UNDEFINED) { // Layout autotune only supports model with convolutional layers if (op_type != "conv2d") { return ins; } else { if (BOOST_GET_CONST(std::string, (*attrs)["data_format"]) == "NCHW") { LayoutAutoTune::Instance().SetDesiredLayout(DataLayout::NHWC); VLOG(3) << "Tune the layout from " << BOOST_GET_CONST(std::string, (*attrs)["data_format"]) << " to " << paddle::framework::DataLayoutToString( LayoutAutoTune::Instance().GetDesiredLayout()); } else { LayoutAutoTune::Instance().DisableLayoutAutoTune(); return ins; } } } std::shared_ptr> transposer = nullptr; if (op_type == "conv2d") { transposer = std::make_shared>(op_type); transposer->SetArguments({"Input"}, {"Output"}, {"data_format"}); } else if (op_type == "batch_norm") { transposer = std::make_shared>(op_type); transposer->SetArguments({"X"}, {"Y"}, {"data_layout"}); } else if (op_type == "pool2d") { transposer = std::make_shared>(op_type); transposer->SetArguments({"X"}, {"Out"}, {"data_format"}); } else if (op_type == "transpose2") { transposer = std::make_shared>(op_type); } else if (op_type == "flatten_contiguous_range") { transposer = std::make_shared>(op_type); } else if (op_type.find("elementwise_") != std::string::npos) { transposer = std::make_shared>(op_type); } else if (LayoutAutoTune::Instance().IsLayoutAgnostic(op_type)) { transposer = std::make_shared>(op_type); } else if (LayoutAutoTune::Instance().IsLightlyLayoutSensitive(op_type)) { transposer = std::make_shared>(op_type); } else { PADDLE_ENFORCE_NOT_NULL( transposer, phi::errors::Unimplemented( "%s 's LayoutTransformer is unimplemented.", op_type)); } return transposer->Apply(ins, outs, attrs, tracer); } template paddle::imperative::NameVarMap AutoTuneLayout( const std::string& op_type, const paddle::imperative::NameVarMap& ins, const paddle::imperative::NameVarMap& outs, paddle::framework::AttributeMap* attrs, const std::shared_ptr& tracer); template paddle::imperative::NameVarMap AutoTuneLayout( const std::string& op_type, const paddle::imperative::NameVarMap& ins, const paddle::imperative::NameVarMap& outs, paddle::framework::AttributeMap* attrs, const std::shared_ptr& tracer); } // namespace imperative } // namespace paddle