# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import gradient_checker import numpy as np from decorator_helper import prog_scope from eager_op_test import OpTest, convert_float_to_uint16 import paddle from paddle import fluid from paddle.fluid import Program, core, program_guard # Situation 1: repeat_times is a list (without tensor) class TestTileOpRank1(OpTest): def setUp(self): self.op_type = "tile" self.python_api = paddle.tile self.prim_op_type = "prim" self.public_python_api = paddle.tile self.init_data() self.if_enable_cinn() self.inputs = {'X': np.random.random(self.ori_shape).astype("float64")} self.attrs = {'repeat_times': self.repeat_times} output = np.tile(self.inputs['X'], self.repeat_times) self.outputs = {'Out': output} def if_enable_cinn(self): pass def init_data(self): self.ori_shape = [100] self.repeat_times = [2] def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestTileOpRank_ZeroDim1(TestTileOpRank1): def init_data(self): self.ori_shape = [] self.repeat_times = [] def if_enable_cinn(self): self.enable_cinn = False class TestTileOpRank_ZeroDim2(TestTileOpRank1): def init_data(self): self.ori_shape = [] self.repeat_times = [2] def if_enable_cinn(self): self.enable_cinn = False class TestTileOpRank_ZeroDim3(TestTileOpRank1): def init_data(self): self.ori_shape = [] self.repeat_times = [2, 3] def if_enable_cinn(self): self.enable_cinn = False # with dimension expanding class TestTileOpRank2Expanding(TestTileOpRank1): def init_data(self): self.ori_shape = [120] self.repeat_times = [2, 2] class TestTileOpRank2(TestTileOpRank1): def init_data(self): self.ori_shape = [12, 14] self.repeat_times = [2, 3] class TestTileOpRank3_Corner(TestTileOpRank1): def init_data(self): self.ori_shape = (2, 10, 5) self.repeat_times = (1, 1, 1) class TestTileOpRank3_Corner2(TestTileOpRank1): def init_data(self): self.ori_shape = (2, 10, 5) self.repeat_times = (2, 2) class TestTileOpRank3(TestTileOpRank1): def init_data(self): self.ori_shape = (2, 4, 15) self.repeat_times = (2, 1, 4) class TestTileOpRank4(TestTileOpRank1): def init_data(self): self.ori_shape = (2, 4, 5, 7) self.repeat_times = (3, 2, 1, 2) # Situation 2: repeat_times is a list (with tensor) class TestTileOpRank1_tensor_attr(OpTest): def setUp(self): self.op_type = "tile" self.python_api = paddle.tile self.init_data() repeat_times_tensor = [] for index, ele in enumerate(self.repeat_times): repeat_times_tensor.append( ("x" + str(index), np.ones(1).astype('int32') * ele) ) self.inputs = { 'X': np.random.random(self.ori_shape).astype("float64"), 'repeat_times_tensor': repeat_times_tensor, } self.attrs = {"repeat_times": self.infer_repeat_times} output = np.tile(self.inputs['X'], self.repeat_times) self.outputs = {'Out': output} def init_data(self): self.ori_shape = [100] self.repeat_times = [2] self.infer_repeat_times = [-1] def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestTileOpRank2_Corner_tensor_attr(TestTileOpRank1_tensor_attr): def init_data(self): self.ori_shape = [12, 14] self.repeat_times = [1, 1] self.infer_repeat_times = [1, -1] class TestTileOpRank2_attr_tensor(TestTileOpRank1_tensor_attr): def init_data(self): self.ori_shape = [12, 14] self.repeat_times = [2, 3] self.infer_repeat_times = [-1, 3] # Situation 3: repeat_times is a tensor class TestTileOpRank1_tensor(OpTest): def setUp(self): self.op_type = "tile" self.python_api = paddle.tile self.init_data() self.inputs = { 'X': np.random.random(self.ori_shape).astype("float64"), 'RepeatTimes': np.array(self.repeat_times).astype("int32"), } self.attrs = {} output = np.tile(self.inputs['X'], self.repeat_times) self.outputs = {'Out': output} def init_data(self): self.ori_shape = [100] self.repeat_times = [2] def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestTileOpRank2_tensor(TestTileOpRank1_tensor): def init_data(self): self.ori_shape = [12, 14] self.repeat_times = [2, 3] # Situation 4: input x is Integer class TestTileOpInteger(OpTest): def setUp(self): self.op_type = "tile" self.python_api = paddle.tile self.inputs = { 'X': np.random.randint(10, size=(4, 4, 5)).astype("int32") } self.attrs = {'repeat_times': [2, 1, 4]} output = np.tile(self.inputs['X'], (2, 1, 4)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() class TestTileFP16OP(OpTest): def setUp(self): self.op_type = "tile" self.dtype = np.float16 self.python_api = paddle.tile self.prim_op_type = "prim" self.enable_cinn = True self.public_python_api = paddle.tile self.init_data() x = np.random.uniform(10, size=self.ori_shape).astype(self.dtype) output = np.tile(x, self.repeat_times) self.inputs = {'X': x} self.attrs = {'repeat_times': self.repeat_times} self.outputs = {'Out': output} def init_data(self): self.dtype = np.float16 self.ori_shape = [100, 4, 5] self.repeat_times = [2, 1, 4] def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) @unittest.skipIf( not core.is_compiled_with_cuda() or not core.is_bfloat16_supported(core.CUDAPlace(0)), "core is not complied with CUDA and not support the bfloat16", ) class TestTileBF16OP(OpTest): def setUp(self): self.op_type = 'tile' self.__class__.op_type = self.op_type self.python_api = paddle.tile self.prim_op_type = "prim" self.public_python_api = paddle.tile self.init_data() x = np.random.uniform(10, size=self.ori_shape).astype(np.float32) output = np.tile(x, self.repeat_times) self.inputs = {'X': convert_float_to_uint16(x)} self.attrs = {'repeat_times': self.repeat_times} self.outputs = {'Out': convert_float_to_uint16(output)} def test_check_output(self): place = core.CUDAPlace(0) self.check_output_with_place(place) def init_data(self): self.dtype = np.uint16 self.ori_shape = [100, 4, 5] self.repeat_times = [2, 1, 4] def test_check_grad(self): place = core.CUDAPlace(0) self.check_grad_with_place(place, ['X'], 'Out', check_prim=True) # Situation 5: input x is Bool class TestTileOpBoolean(OpTest): def setUp(self): self.op_type = "tile" self.python_api = paddle.tile self.inputs = {'X': np.random.randint(2, size=(2, 4, 5)).astype("bool")} self.attrs = {'repeat_times': [2, 1, 4]} output = np.tile(self.inputs['X'], (2, 1, 4)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() # Situation 56: input x is Integer class TestTileOpInt64_t(OpTest): def setUp(self): self.op_type = "tile" self.python_api = paddle.tile self.inputs = { 'X': np.random.randint(10, size=(2, 4, 5)).astype("int64") } self.attrs = {'repeat_times': [2, 1, 4]} output = np.tile(self.inputs['X'], (2, 1, 4)) self.outputs = {'Out': output} def test_check_output(self): self.check_output() class TestTileError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): x1 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace() ) repeat_times = [2, 2] self.assertRaises(TypeError, paddle.tile, x1, repeat_times) x2 = paddle.static.data(name='x2', shape=[-1, 4], dtype="uint8") self.assertRaises(TypeError, paddle.tile, x2, repeat_times) x3 = paddle.static.data(name='x3', shape=[-1, 4], dtype="bool") x3.stop_gradient = False self.assertRaises(ValueError, paddle.tile, x3, repeat_times) class TestTileAPIStatic(unittest.TestCase): def test_api(self): with program_guard(Program(), Program()): repeat_times = [2, 2] x1 = paddle.static.data(name='x1', shape=[-1, 4], dtype="int32") out = paddle.tile(x1, repeat_times) positive_2 = paddle.tensor.fill_constant( [1], dtype="int32", value=2 ) out2 = paddle.tile(x1, repeat_times=[positive_2, 2]) # Test python API class TestTileAPI(unittest.TestCase): def test_api(self): with fluid.dygraph.guard(): np_x = np.random.random([12, 14]).astype("float32") x = paddle.to_tensor(np_x) positive_2 = np.array([2]).astype("int32") positive_2 = paddle.to_tensor(positive_2) repeat_times = np.array([2, 3]).astype("int32") repeat_times = paddle.to_tensor(repeat_times) out_1 = paddle.tile(x, repeat_times=[2, 3]) out_2 = paddle.tile(x, repeat_times=[positive_2, 3]) out_3 = paddle.tile(x, repeat_times=repeat_times) assert np.array_equal(out_1.numpy(), np.tile(np_x, (2, 3))) assert np.array_equal(out_2.numpy(), np.tile(np_x, (2, 3))) assert np.array_equal(out_3.numpy(), np.tile(np_x, (2, 3))) class TestTileDoubleGradCheck(unittest.TestCase): def tile_wrapper(self, x): return paddle.tile(x[0], [2, 1]) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = paddle.static.data('data', [1, 2], dtype) data.persistable = True out = paddle.tile(data, [2, 1]) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.double_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.double_grad_check_for_dygraph( self.tile_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestTileTripleGradCheck(unittest.TestCase): def tile_wrapper(self, x): return paddle.tile(x[0], [2, 1]) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = paddle.static.data('data', [1, 2], dtype) data.persistable = True out = paddle.tile(data, [2, 1]) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.triple_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.triple_grad_check_for_dygraph( self.tile_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestTileAPI_ZeroDim(unittest.TestCase): def test_dygraph(self): paddle.disable_static() x = paddle.rand([]) x.stop_gradient = False out = paddle.tile(x, []) out.retain_grads() out.backward() self.assertEqual(out.shape, []) self.assertEqual(x.grad.shape, []) self.assertEqual(out.grad.shape, []) out = paddle.tile(x, [3]) out.retain_grads() out.backward() self.assertEqual(out.shape, [3]) self.assertEqual(x.grad.shape, []) self.assertEqual(out.grad.shape, [3]) out = paddle.tile(x, [2, 3]) out.retain_grads() out.backward() self.assertEqual(out.shape, [2, 3]) self.assertEqual(x.grad.shape, []) self.assertEqual(out.grad.shape, [2, 3]) paddle.enable_static() class Testfp16TileOp(unittest.TestCase): def testfp16(self): input_x = (np.random.random([1, 2, 3])).astype('float16') with paddle.static.program_guard(paddle.static.Program()): x = paddle.static.data(name="x", shape=[1, 2, 3], dtype='float16') repeat_times = [2, 2] out = paddle.tile(x, repeat_times=repeat_times) if paddle.is_compiled_with_cuda(): place = paddle.CUDAPlace(0) exe = paddle.static.Executor(place) exe.run(paddle.static.default_startup_program()) out = exe.run(feed={'x': input_x}, fetch_list=[out]) if __name__ == "__main__": paddle.enable_static() unittest.main()