/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #ifndef _USE_MATH_DEFINES #define _USE_MATH_DEFINES #endif #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/platform/float16.h" #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/platform/mkldnn_helper.h" #endif namespace paddle { namespace operators { template struct GeluFunctor { template void operator()(Device d, X x, Out out, bool approximate) const { if (approximate) { // gelu(x) = 0.5 * x * (1 + tanh(sqrt(2 / \pi) * (x + 0.044715 * x^{3}))) auto temp = (static_cast(M_2_SQRTPI * M_SQRT1_2) * (x + static_cast(0.044715) * x.cube())) .tanh(); out.device(d) = x * static_cast(0.5) * (static_cast(1) + temp); } else { #if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \ !defined(__OSX__) && !defined(PADDLE_WITH_CUDA) auto x_data = x.data(); auto out_data = out.data(); int n = std::min(x.size(), out.size()); std::memset(out_data, 0, n * sizeof(T)); math::CBlas::AXPY(n, static_cast(M_SQRT1_2), x_data, 1, out_data, 1); math::CBlas::VMERF(n, out_data, out_data, VML_LA); for (int i = 0; i < n; i++) { out_data[i] += static_cast(1); } math::CBlas::VMUL(n, x_data, out_data, out_data); for (int i = 0; i < n; i++) { out_data[i] *= static_cast(0.5); } #else // gelu(x) = 0.5 * x * (1 + erf(x / sqrt(2))) auto temp = (x * static_cast(M_SQRT1_2)).erf(); out.device(d) = x * static_cast(0.5) * (static_cast(1) + temp); #endif } } }; template struct GeluGradFunctor { template void operator()(Device d, X x, dOut dout, dX dx, bool approximate) const { if (approximate) { const T kAlpha = static_cast(M_2_SQRTPI * M_SQRT1_2); const T kBeta = kAlpha * static_cast(0.044715) * static_cast(3); const auto y = (kAlpha * ((static_cast(0.044715) * x.cube()) + x)).tanh(); dx.device(d) = static_cast(0.5) * dout * (static_cast(1) + y + (x - x * y.square()) * (kAlpha + kBeta * x.square())); } else { #if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \ !defined(__OSX__) && !defined(PADDLE_WITH_CUDA) auto x_data = x.data(); auto dx_data = dx.data(); auto dout_data = dout.data(); int n = std::min(x.size(), dx.size()); auto first = static_cast(std::malloc(n * sizeof(T))); std::memset(first, 0, n * sizeof(T)); auto second = static_cast(std::malloc(n * sizeof(T))); std::memset(second, 0, n * sizeof(T)); // first = (0.5 * (1 + erf(x / sqrt(2)))) math::CBlas::AXPY(n, static_cast(M_SQRT1_2), x_data, 1, first, 1); math::CBlas::VMERF(n, first, first, VML_LA); for (int i = 0; i < n; i++) { first[i] += static_cast(1); } math::CBlas::SCAL(n, static_cast(0.5), first, 1); // second = (0.5 * 2/sqrt(pi) * 1/sqrt(2) * x * exp(-0.5 * x^2)) math::CBlas::VSQUARE(n, x_data, second); math::CBlas::SCAL(n, -static_cast(0.5), second, 1); math::CBlas::VEXP(n, second, second); math::CBlas::VMUL(n, x_data, second, second); math::CBlas::SCAL(n, static_cast(0.5 * M_2_SQRTPI * M_SQRT1_2), second, 1); // dx = dout * (first + second); math::CBlas::VADD(n, first, second, first); math::CBlas::VMUL(n, dout_data, first, dx_data); std::free(first); std::free(second); #else // gelu_grad(x) = dout * 0.5 * (1 + erf(x / sqrt(2)) + x * sqrt(2 / pi) * // exp(- x^2 / 2) auto first = static_cast(0.5) * (static_cast(1) + ((x * static_cast(M_SQRT1_2)).erf())); auto second = static_cast(0.5 * M_2_SQRTPI * M_SQRT1_2) * x * (-static_cast(0.5) * x.square()).exp(); dx.device(d) = dout * (first + second); #endif } } }; template class GeluKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* out = context.Output("Out"); auto* in = context.Input("X"); auto approximate = context.Attr("approximate"); out->mutable_data(in->place()); auto eigen_out = framework::EigenVector::Flatten(*out); auto eigen_in = framework::EigenVector::Flatten(*in); auto& place = *context.template device_context().eigen_device(); GeluFunctor functor; functor(place, eigen_in, eigen_out, approximate); } }; template class GeluGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* x = context.Input("X"); auto* dout = context.Input(framework::GradVarName("Out")); auto* dx = context.Output(framework::GradVarName("X")); auto approximate = context.Attr("approximate"); dx->mutable_data(dout->place()); auto eigen_x = framework::EigenVector::Flatten(*x); auto eigen_dout = framework::EigenVector::Flatten(*dout); auto eigen_dx = framework::EigenVector::Flatten(*dx); auto& place = *context.template device_context().eigen_device(); GeluGradFunctor functor; functor(place, eigen_x, eigen_dout, eigen_dx, approximate); } }; } // namespace operators } // namespace paddle