// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/norm_kernel.h" #include #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void NormKernel(const Context& ctx, const DenseTensor& x, int axis, float epsilon, bool is_test, DenseTensor* out, DenseTensor* norm) { ctx.template Alloc(out); ctx.template Alloc(norm); std::vector xshape; auto x_dims = x.dims(); auto x_dims_size = x_dims.size(); xshape.resize(x_dims_size); if (axis < 0) { axis += x_dims_size; } PADDLE_ENFORCE_GE( axis, 0, phi::errors::InvalidArgument("axis must be greater than or equal to 0." "But received axis: %d.", axis)); PADDLE_ENFORCE_LT(axis, x_dims_size, phi::errors::InvalidArgument( "Attr(axis) value must be less than rank of Input(X)" "But received axis: %d, rank: %d.", axis, x_dims_size)); for (int i = 0; i < x_dims_size; i++) { xshape[i] = static_cast(x_dims[i]); } int r = xpu::l2_norm(ctx.x_context(), x.data(), out->data(), norm->data(), xshape, axis, epsilon); PADDLE_ENFORCE_XDNN_SUCCESS(r, "l2_norm"); } } // namespace phi PD_REGISTER_KERNEL(norm, XPU, ALL_LAYOUT, phi::NormKernel, float) {}