/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include "paddle/pten/core/tensor_base.h" /** * [ Why still include the fluid headers? ] * * We hope to organize the basic implementation of Tensor and the logic related * to Tensor computation into an independent library, which we call * [Tensor Operation Library, pten], so we extract or rewrite the original * Kernels. * * In the future, the training library, inference library and custom operators * will link to this Tensor Operation library. * * However, if we directly split the link relation, we need to make too many * changes, which will affect the stability of the framework, so here we still * rely on the implementation of the framework, which is a intermediate state. * * In the future, the necessary components will be moved to the this library, * or the corresponding components will be re-implemented. */ #include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/place.h" namespace paddle { namespace experimental { class Tensor; class AbstractAutogradMeta { public: // No AbstractAutogradMeta should be created virtual ~AbstractAutogradMeta() {} }; /** * Tensor is the API description of the basic data structure in the * [ "Paddle Tensor Operation (pten)" Library ]. * * It is not limited to a simple n-dimensional array. * It contains a smart pointer to `TensorImpl`. The data description contained * in Tensor is defined by TensorImpl. Tensor only defines the interface for * computation. * * This is a new Tensor design, which is independent of the original * framework::Tensor in fluid. The original Tensor will be gradually discarded * in the future. * * Note: Tensor can be NULL state, Tensor is meaningful only when the * TensorImpl to which it is pointed is not empty. * * Note: For the consistency of C++ API self, and the consistency between C++ * API and Python API, all member methods of Tensor are named with lowercase * letters and underscores. * * Note: Tensor cannot be inherited. The heterogeneous Tensor implementation * can be achieved by inheriting the underlying TensorBase. * * Note: This Tensor API is suitable for training and custom operators, * another simple Tensor design may be required for inference. */ class Tensor final { public: /* Part 1: Construction and destruction methods */ Tensor() {} Tensor(const Tensor&) = default; Tensor(Tensor&&) = default; /** * @description: Use a TensorImpl pointer to construct a Tensor * @param {shared_ptr} tensor_impl * @return {Tensor} */ explicit Tensor(std::shared_ptr tensor_impl) : impl_(std::move(tensor_impl)) { PADDLE_ENFORCE_NOT_NULL(impl_, platform::errors::InvalidArgument( "TensorImpl with nullptr is not supported")); } /* Part 2: Dimension, DataType and DataLayout methods */ /** * @description: Return the number of elements of current Tensor. * @param None * @return {int64_t} */ int64_t numel() const { return impl_->numel(); } /** * @description: Return the shape (dimensions) of current Tensor. * @param None * @return {DDim} */ paddle::framework::DDim shape() const { return impl_->dims(); } /** * @description: Return the data type of current Tensor. * @param None * @return {DataType} */ paddle::experimental::DataType type() const { return impl_->data_type(); } /** * @description: Return the layout of current Tensor. * @param None * @return {DataLayout} */ paddle::experimental::DataLayout layout() const { return impl_->layout(); } /* Part 3: Device and Backend methods */ /** * @description: Return the place (device) of current Tensor. * @param None * @return {Place} */ paddle::platform::Place place() const { return impl_->place(); } /** * Backend judgment APIs, shield the concept of Backend. */ bool is_cpu() const { return paddle::platform::is_cpu_place(place()); } bool is_cuda() const { return paddle::platform::is_gpu_place(place()); } /** * Backend convert APIs. */ Tensor cpu() const; Tensor cuda() const; /* Part 4: Data Access methods */ /** * @description: Return the implemention of current Tensor. * @param None * @return {std::shared_ptr} */ std::shared_ptr impl() const { return impl_; } /** * @description: Set the implemention of current Tensor. * @param {std::shared_ptr} * @return None */ void set_impl(const std::shared_ptr& impl) { impl_ = impl; } // TODO(chenweihang): Whether API Tensor need `data` and `mutable_data`? // TODO(chenweihang): slice and split methods use kernels? /* Part 5: Status utils methods */ /** * @description: Determine whether it is a meaningful Tensor * @param None * @return {bool} */ bool defined() const { return impl_ != nullptr; } /** * @description: Determine whether Tensor is initialized * @param None * @return {bool} */ bool initialized() const { return impl_->initialized(); } /** * @description: Reset the Tensor implementation * @param None * @return {void} */ void reset() { impl_.reset(); } /* Part 6: Operator overloading */ Tensor& operator=(const Tensor& x) & { impl_ = x.impl_; autograd_meta_ = x.autograd_meta_; return *this; } Tensor& operator=(Tensor&& x) & { impl_ = std::move(x.impl_); autograd_meta_ = std::move(x.autograd_meta_); return *this; } /* Part 7: Autograd methods */ AbstractAutogradMeta* get_autograd_meta() const { return autograd_meta_.get(); } void set_autograd_meta(std::shared_ptr autograd_meta) { autograd_meta_ = std::move(autograd_meta); } /* Part 8: Auto generated Tensor methods */ // ... private: /** * [ Why use abstract TensorImpl interface here? ] * * We hope that the data structure at the API level of the framework can be * unified to Tensor, but Tensor itself is heterogeneous. * * Tensor can generally be represented by void* and size_t, place. * This is suitable for most scenarios including CPU, CUDA, HIP, CPU, etc., * but there are a few cases where this definition cannot be described, * such as the Tensor representation in third-party lib such as Metal, * OpenCL, etc., as well as some special Tensor implementations, including * Tensor containing only one Scalar value, or Tensor representing String, * etc. * * Therefore, we hope to use a unified interface to shield the underlying * heterogeneous Tensor implementation, so that the API level can be unified * to one `Tensor`. */ std::shared_ptr impl_; /** * [ Why need abstract AbstractAutogradMeta here? ] * * Dynamic graphs need to hold backward information * * [ Why AutogradMeta not in TensorImpl? ] * * 1. AutogradMeta is only used in dynamic graph, It is execution-related * information, not Tensor data description-related information. * 2. Kernel calculation does not require AutogradMeta. */ std::shared_ptr autograd_meta_{nullptr}; /** * Tensor name: used for adapt original execution mechanism and debug analysis * in the development of new dygraph. */ std::string name_; }; } // namespace experimental } // namespace paddle