/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/dot_op.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/complex_functors.h" #include "paddle/fluid/operators/reduce_ops/reduce_sum_op.h" #if defined(__NVCC__) || defined(__HIPCC__) #include "paddle/fluid/operators/reduce_ops/cub_reduce.h" #endif namespace paddle { namespace operators { using framework::Tensor; struct IdentityFunctor { HOSTDEVICE explicit inline IdentityFunctor() {} template HOSTDEVICE inline U operator()(const U& x) const { return x; } }; template void ReduceSumForMatmulGrad(const Tensor* input, Tensor* output, const std::vector& reduce_dims, const paddle::framework::ExecutionContext& ctx) { #if defined(__NVCC__) || defined(__HIPCC__) auto stream = ctx.cuda_device_context().stream(); TensorReduce(*input, output, reduce_dims, static_cast(0), cub::Sum(), IdentityFunctor(), stream); #else ReduceKernelFunctor( input, output, reduce_dims, true, false, ctx) .template apply(); #endif } static void GetBroadcastFromDims(const int x_ndim, const std::int64_t* x_dims, const int y_ndim, const std::int64_t* y_dims, std::int64_t* x_bd_dims, std::int64_t* y_bd_dims, std::int64_t* out_bd_dims) { const int ndim = (std::max)(x_ndim, y_ndim); std::fill(x_bd_dims, x_bd_dims + ndim - x_ndim, 1); std::fill(y_bd_dims, y_bd_dims + ndim - y_ndim, 1); std::copy(x_dims, x_dims + x_ndim, x_bd_dims + ndim - x_ndim); std::copy(y_dims, y_dims + y_ndim, y_bd_dims + ndim - y_ndim); for (int i = 0; i < ndim; ++i) { PADDLE_ENFORCE_EQ( x_bd_dims[i] == y_bd_dims[i] || x_bd_dims[i] <= 1 || y_bd_dims[i] <= 1, true, platform::errors::InvalidArgument( "Input(X) and Input(Y) has error dim." "X_broadcast's shape[%s] must be equal to Y_broadcast's shape[%s]," "or X_broadcast's shape[%s] <= 1, or Y_broadcast's shape[%s] <= 1," "But received X_broadcast's shape[%s] = [%s]" "received Y_broadcast's shape[%s] = [%s]", i, i, i, i, i, x_bd_dims[i], i, y_bd_dims[i])); if (x_bd_dims[i] == 0 || y_bd_dims[i] == 0) { out_bd_dims[i] = 0; } else { out_bd_dims[i] = (std::max)(x_bd_dims[i], y_bd_dims[i]); } } } static int64_t GetIndexMessage(const int n, const int64_t* dims, const int64_t* index) { int64_t sum = 0; for (int i = 0; i < n; ++i) { if (dims[i] > 1) { sum = sum * dims[i] + index[i]; } } return sum; } static void IndexIncreaseFromDims(const int ndim, const int64_t* dims, int64_t* index) { for (int i = ndim - 1; i >= 0; --i) { ++index[i]; if (index[i] >= dims[i]) { index[i] -= dims[i]; } else { break; } } } template void MatMulFunction(const Tensor* X, const Tensor* Y, const std::vector& x_dims, const std::vector& y_dims, Tensor* Out, bool trans_x, bool trans_y, const paddle::framework::ExecutionContext& ctx, bool flag = false) { const int x_ndim = x_dims.size(); const int y_ndim = y_dims.size(); // Get data ptr const T* x_data = X->data(); const T* y_data = Y->data(); if (x_ndim == 1 && y_ndim == 1) { PADDLE_ENFORCE_EQ( X->numel(), Y->numel(), platform::errors::InvalidArgument( "X's numbers must be equal to Y's numbers," "when X/Y's dims =1. But received X has [%d] elements," "received Y has [%d] elements", X->numel(), Y->numel())); VLOG(3) << "MatMul's case 1"; Out->Resize({1}); Out->mutable_data(ctx.GetPlace()); auto out_eigen = framework::EigenScalar::From(*Out); auto x_eigen = framework::EigenVector::Flatten(*X); auto y_eigen = framework::EigenVector::Flatten(*Y); auto& dev = *ctx.template device_context().eigen_device(); if (flag) { out_eigen.device(dev) = (x_eigen * y_eigen).sum() + out_eigen; } else { out_eigen.device(dev) = (x_eigen * y_eigen).sum(); } return; } auto& dev_ctx = ctx.template device_context(); auto blas = math::GetBlas(dev_ctx); if (x_ndim == 1) { const int N = X->numel(); if (trans_y) { PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1], N, platform::errors::InvalidArgument( "Input(Y) has error dim." "Y'dims[%d] must be equal to %d" "But received Y'dims[%d] is %d", y_ndim - 1, N, y_ndim - 1, y_dims[y_ndim - 1])); } else { PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2], N, platform::errors::InvalidArgument( "Input(Y) has error dim." "Y'dims[%d] must be equal to %d" "But received Y'dims[%d] is %d", y_ndim - 2, N, y_ndim - 2, y_dims[y_ndim - 2])); } std::vector out_dims(y_ndim - 1); if (trans_y) { std::copy_n(y_dims.cbegin(), y_ndim - 1, out_dims.begin()); } else { std::copy_n(y_dims.cbegin(), y_ndim - 2, out_dims.begin()); out_dims.back() = y_dims.back(); } Out->Resize(framework::make_ddim(out_dims)); Out->mutable_data(ctx.GetPlace()); if (trans_y) { const int M = Y->numel() / N; VLOG(3) << "MatMul's case 2"; blas.GEMV(false, M, N, static_cast(1), y_data, x_data, static_cast(flag), Out->data()); } else { const int M = y_dims[y_ndim - 1]; const int batch_size = Y->numel() / (M * N); if (batch_size == 1) { VLOG(3) << "MatMul's case 3"; blas.GEMV(true, N, M, static_cast(1), y_data, x_data, static_cast(flag), Out->data()); } else { VLOG(3) << "MatMul's case 4"; blas.BatchedGEMM(CblasTrans, CblasNoTrans, M, 1, N, static_cast(1), y_data, x_data, static_cast(flag), Out->data(), batch_size, M * N, 0); } } return; } if (y_ndim == 1) { const int N = Y->numel(); if (trans_x) { PADDLE_ENFORCE_EQ(x_dims[x_ndim - 2], N, platform::errors::InvalidArgument( "Input(X) has error dim." "X'dims[%d] must be equal to %d" "But received X'dims[%d] is %d", x_ndim - 2, N, x_ndim - 2, x_dims[x_ndim - 2])); } else { PADDLE_ENFORCE_EQ(x_dims[x_ndim - 1], N, platform::errors::InvalidArgument( "Input(X) has error dim." "X'dims[%d] must be equal to %d" "But received X'dims[%d] is %d", x_ndim - 1, N, x_ndim - 1, x_dims[x_ndim - 1])); } std::vector out_dims(x_ndim - 1); if (trans_x) { std::copy_n(x_dims.cbegin(), x_ndim - 2, out_dims.begin()); out_dims.back() = x_dims.back(); } else { std::copy_n(x_dims.cbegin(), x_ndim - 1, out_dims.begin()); } Out->Resize(framework::make_ddim(out_dims)); Out->mutable_data(ctx.GetPlace()); if (trans_x) { const int M = x_dims[x_ndim - 1]; const int batch_size = X->numel() / (M * N); if (batch_size == 1) { VLOG(3) << "MatMul's case 5"; blas.GEMV(true, N, M, static_cast(1), x_data, y_data, static_cast(flag), Out->data()); } else { VLOG(3) << "MatMul's case 6"; blas.BatchedGEMM(CblasTrans, CblasNoTrans, M, 1, N, static_cast(1), x_data, y_data, static_cast(flag), Out->data(), batch_size, M * N, 0); } } else { const int M = X->numel() / N; VLOG(3) << "MatMul's case 7"; blas.GEMV(false, M, N, static_cast(1), x_data, y_data, static_cast(flag), Out->data()); } return; } const int M = trans_x ? x_dims[x_ndim - 1] : x_dims[x_ndim - 2]; const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1]; if (trans_y) { PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1], K, platform::errors::InvalidArgument( "Input(Y) has error dim." "Y'dims[%d] must be equal to %d" "But received Y'dims[%d] is %d", y_ndim - 1, K, y_ndim - 1, y_dims[y_ndim - 1])); } else { PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2], K, platform::errors::InvalidArgument( "Input(Y) has error dim." "Y'dims[%d] must be equal to %d" "But received Y'dims[%d] is %d", y_ndim - 2, K, y_ndim - 2, y_dims[y_ndim - 2])); } const int N = trans_y ? y_dims[y_ndim - 2] : y_dims[y_ndim - 1]; const int ndim = (std::max)(x_ndim, y_ndim); std::vector x_broadcast_dims(ndim); std::vector y_broadcast_dims(ndim); std::vector out_broadcast_dims(ndim); GetBroadcastFromDims(x_ndim - 2, x_dims.data(), y_ndim - 2, y_dims.data(), x_broadcast_dims.data(), y_broadcast_dims.data(), out_broadcast_dims.data()); out_broadcast_dims[ndim - 2] = M; out_broadcast_dims[ndim - 1] = N; Out->Resize(framework::make_ddim(out_broadcast_dims)); Out->mutable_data(ctx.GetPlace()); const int batch_dim = ndim - 2; // broadcast message const bool is_broadcast_dims = !std::equal( x_broadcast_dims.cbegin(), x_broadcast_dims.cbegin() + batch_dim, y_broadcast_dims.cbegin()); const std::int64_t x_batch_size = std::accumulate( x_broadcast_dims.cbegin(), x_broadcast_dims.cbegin() + batch_dim, 1LL, std::multiplies()); const std::int64_t y_batch_size = std::accumulate( y_broadcast_dims.cbegin(), y_broadcast_dims.cbegin() + batch_dim, 1LL, std::multiplies()); const std::int64_t out_batch_size = std::accumulate( out_broadcast_dims.cbegin(), out_broadcast_dims.cbegin() + batch_dim, 1LL, std::multiplies()); if (out_batch_size == 0) return; if (x_batch_size == 1 && y_batch_size == 1) { VLOG(3) << "MatMul's case 8"; blas.GEMM(trans_x ? CblasTrans : CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast(1), x_data, y_data, static_cast(flag), Out->data()); } else if (x_batch_size == 1) { if (M == 1 && trans_y) { VLOG(3) << "MatMul's case 9"; blas.GEMV(false, y_batch_size * N, K, static_cast(1), y_data, x_data, static_cast(flag), Out->data()); } else { VLOG(3) << "MatMul's case 10"; blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast(1), x_data, y_data, static_cast(flag), Out->data(), out_batch_size, 0, K * N); } } else if (y_batch_size == 1) { if (!trans_x) { VLOG(3) << "MatMul's case 11"; blas.GEMM(CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans, x_batch_size * M, N, K, static_cast(1), x_data, y_data, static_cast(flag), Out->data()); } else { VLOG(3) << "MatMul's case 12"; blas.BatchedGEMM(CblasTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast(1), x_data, y_data, static_cast(flag), Out->data(), out_batch_size, M * K, 0); } } else if (!is_broadcast_dims) { VLOG(3) << "MatMul's case 13"; blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast(1), x_data, y_data, static_cast(flag), Out->data(), out_batch_size, M * K, K * N); } else { // in the case, can't use stridedgemm std::vector x_ptr(out_batch_size); std::vector y_ptr(out_batch_size); std::vector out_ptr(out_batch_size); std::vector index(batch_dim, 0); for (std::int64_t i = 0; i < out_batch_size; ++i) { // using the index to get offset const std::int64_t x_index = GetIndexMessage(batch_dim, x_broadcast_dims.data(), index.data()); const std::int64_t y_index = GetIndexMessage(batch_dim, y_broadcast_dims.data(), index.data()); x_ptr[i] = x_data + x_index * M * K; y_ptr[i] = y_data + y_index * K * N; out_ptr[i] = Out->data() + i * M * N; IndexIncreaseFromDims(batch_dim, out_broadcast_dims.data(), index.data()); } VLOG(3) << "MatMul's case 14"; blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast(1), x_ptr.data(), y_ptr.data(), static_cast(flag), out_ptr.data(), out_batch_size); } } template void MatMulFunction(const Tensor* X, const Tensor* Y, Tensor* Out, bool trans_x, bool trans_y, const paddle::framework::ExecutionContext& ctx, bool flag = false) { const std::vector x_dims = vectorize(X->dims()); const std::vector y_dims = vectorize(Y->dims()); MatMulFunction(X, Y, x_dims, y_dims, Out, trans_x, trans_y, ctx, flag); } template class MatMulV2Kernel : public framework::OpKernel { public: void Compute(const paddle::framework::ExecutionContext& ctx) const override { auto* X = ctx.Input("X"); auto* Y = ctx.Input("Y"); auto* Out = ctx.Output("Out"); bool trans_x = ctx.Attr("trans_x"); bool trans_y = ctx.Attr("trans_y"); PADDLE_ENFORCE_NE(framework::product(X->dims()), 0, platform::errors::InvalidArgument( "The Input(X) dims size must not be equal 0," " but reviced dims size is 0. ")); PADDLE_ENFORCE_NE(framework::product(Y->dims()), 0, platform::errors::InvalidArgument( "The Input(Y) dims size must not be equal 0," " but reviced dims size is 0. ")); MatMulFunction(X, Y, Out, trans_x, trans_y, ctx); } }; // Reshape a rank-3 tensor from P x M x N to (P * M) x N. // Identity op if the tensor is not of rank 3. static framework::Tensor FoldInitDims(const framework::Tensor& input) { auto output = input; auto in_dims = input.dims(); if (in_dims.size() == 3) { output.Resize({in_dims[0] * in_dims[1], in_dims[2]}); } return output; } // Reshape a rank-3 tensor from P x M x N to M x (P * N). // (Warning: This requires transposing data and writes into new memory.) // Identity op if the tensor is not of rank 3. template static framework::Tensor FoldHeadAndLastDims(const DeviceContext& context, const framework::Tensor& input) { auto in_dims = input.dims(); if (in_dims.size() != 3) { return input; } framework::Tensor output; output.Resize({in_dims[1], in_dims[0], in_dims[2]}); output.mutable_data(context.GetPlace()); std::vector axis = {1, 0, 2}; math::Transpose trans; trans(context, input, &output, axis); output.Resize({in_dims[1], in_dims[0] * in_dims[2]}); return output; } /** * Get row matrix shape from a vector shape. If the rank of x_dim > 1, the * original x_dim is returned. */ static framework::DDim RowMatrixFromVector(const framework::DDim& x_dim) { if (x_dim.size() > 1) { return x_dim; } return framework::make_ddim({1, x_dim[0]}); } /** * Get column matrix shape from a vector shape. If the ran of y_dim > 1, the * original y_dim is returned. */ static framework::DDim ColumnMatrixFromVector(const framework::DDim& y_dim) { if (y_dim.size() > 1) { return y_dim; } return framework::make_ddim({y_dim[0], 1}); } /** * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor. * * The shape would be [BatchSize, H, W] or [H, W]. * If transposed, `H,W` will be swapped. */ static void ReshapeTensorIntoMatrixSequence( framework::Tensor* x, const math::MatDescriptor& descriptor) { int64_t h, w; h = descriptor.height_; w = descriptor.width_; if (descriptor.trans_) { std::swap(w, h); } if (descriptor.batch_size_) { x->Resize({descriptor.batch_size_, h, w}); } else { x->Resize({h, w}); } } static void ReshapeXYOutIntoMatrixSequence(framework::Tensor* x, framework::Tensor* y, framework::Tensor* out, bool trans_x, bool trans_y) { auto x_dim = RowMatrixFromVector(x->dims()); auto y_dim = ColumnMatrixFromVector(y->dims()); auto mat_dim_x = math::CreateMatrixDescriptor(x_dim, 0, trans_x); auto mat_dim_y = math::CreateMatrixDescriptor(y_dim, 0, trans_y); if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) { out->Resize({mat_dim_x.height_, mat_dim_y.width_}); } else { out->Resize({(std::max)(mat_dim_x.batch_size_, mat_dim_y.batch_size_), mat_dim_x.height_, mat_dim_y.width_}); } ReshapeTensorIntoMatrixSequence(x, mat_dim_x); ReshapeTensorIntoMatrixSequence(y, mat_dim_y); } template struct ConjHelper { explicit ConjHelper(const framework::ExecutionContext& ctx) : ctx_(ctx) {} HOSTDEVICE void operator()(framework::Tensor& src, framework::Tensor& dst) { dst.Resize(src.dims()); dst.set_layout(src.layout()); dst.ShareDataWith(src); return; } const framework::ExecutionContext& ctx_; }; template struct ConjHelper> { explicit ConjHelper(const framework::ExecutionContext& ctx) : ctx_(ctx) {} HOSTDEVICE void operator()(framework::Tensor& src, framework::Tensor& dst) { dst.Resize(src.dims()); auto* src_data = src.data>(); auto* dst_data = dst.mutable_data>( ctx_.GetPlace(), size_t(src.numel() * sizeof(paddle::platform::complex))); platform::ForRange for_range( ctx_.template device_context(), src.numel()); math::ConjFunctor> functor( src_data, src.numel(), dst_data); for_range(functor); return; } const framework::ExecutionContext& ctx_; }; template struct ConjHelper> { explicit ConjHelper(const framework::ExecutionContext& ctx) : ctx_(ctx) {} HOSTDEVICE void operator()(framework::Tensor& src, framework::Tensor& dst) { dst.Resize(src.dims()); auto* src_data = src.data>(); auto* dst_data = dst.mutable_data>( ctx_.GetPlace(), size_t(src.numel() * sizeof(paddle::platform::complex))); platform::ForRange for_range( ctx_.template device_context(), src.numel()); math::ConjFunctor> functor( src_data, src.numel(), dst_data); for_range(functor); return; } const framework::ExecutionContext& ctx_; }; template struct DotDoubleGradFunction { void operator()(const Tensor* tensor_x, const Tensor* tensor_y, Tensor* tensor_dx, Tensor* tensor_dy, const Tensor* tensor_dout, const Tensor* tensor_ddx, const Tensor* tensor_ddy, Tensor* tensor_ddout, const paddle::framework::ExecutionContext& ctx); }; template struct DotDoubleGradFunction> { void operator()(const Tensor* tensor_x, const Tensor* tensor_y, Tensor* tensor_dx, Tensor* tensor_dy, const Tensor* tensor_dout, const Tensor* tensor_ddx, const Tensor* tensor_ddy, Tensor* tensor_ddout, const paddle::framework::ExecutionContext& ctx) { #if defined(__NVCC__) || defined(__HIPCC__) if (1 == tensor_dout->dims().size()) { framework::Tensor tensor_dout_help; auto& dev_raw = ctx.template device_context(); auto& dev = *dev_raw.eigen_device(); if (tensor_dx || tensor_dy) { tensor_dout_help.Resize(tensor_dout->dims()); tensor_dout_help.mutable_data(ctx.GetPlace()); paddle::platform::ForRange for_range( dev_raw, tensor_dout->numel()); math::ConjFunctor functor(tensor_dout->data(), tensor_dout->numel(), tensor_dout_help.data()); for_range(functor); } if (tensor_dx) { auto ddy = framework::EigenVector::Flatten(*tensor_ddy); Eigen::DSizes size(tensor_ddy->numel()); auto dx = framework::EigenVector::Flatten(*tensor_dx); auto dout = framework::EigenVector::Flatten(tensor_dout_help); dx.device(dev) = ddy * dout.broadcast(size); } if (tensor_dy) { auto ddx = framework::EigenVector::Flatten(*tensor_ddx); Eigen::DSizes size(tensor_ddx->numel()); auto dy = framework::EigenVector::Flatten(*tensor_dy); auto dout = framework::EigenVector::Flatten(tensor_dout_help); dy.device(dev) = ddx * dout.broadcast(size); } if (tensor_ddout) { framework::Tensor tensor_x_help, tensor_y_help; tensor_x_help.Resize(tensor_x->dims()); tensor_x_help.mutable_data(ctx.GetPlace()); tensor_y_help.Resize(tensor_y->dims()); tensor_y_help.mutable_data(ctx.GetPlace()); auto& dev_raw = ctx.template device_context(); auto& dev = *dev_raw.eigen_device(); paddle::platform::ForRange for_range(dev_raw, tensor_x->numel()); math::ConjFunctor functor_x(tensor_x->data(), tensor_x->numel(), tensor_x_help.data()); for_range(functor_x); math::ConjFunctor functor_y(tensor_y->data(), tensor_y->numel(), tensor_y_help.data()); for_range(functor_y); auto x = framework::EigenVector::Flatten(tensor_x_help); auto y = framework::EigenVector::Flatten(tensor_y_help); auto ddx = framework::EigenVector::Flatten(*tensor_ddx); auto ddy = framework::EigenVector::Flatten(*tensor_ddy); auto ddout = framework::EigenVector::Flatten(*tensor_ddout); ddout.device(dev) = (x * ddy + y * ddx).sum(); } } #else const auto* data_dout = tensor_dout->data(); if (tensor_dx) { auto* data_dx = tensor_dx->mutable_data(ctx.GetPlace()); const auto* data_ddy = tensor_ddy->data(); const framework::DDim& dim = tensor_dx->dims(); size_t N = static_cast(framework::product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_dx[i] = T(data_dout[s].real, -data_dout[s].imag) * data_ddy[i]; } } if (tensor_dy) { auto* data_dy = tensor_dy->mutable_data(ctx.GetPlace()); const auto* data_ddx = tensor_ddx->data(); const framework::DDim& dim = tensor_dy->dims(); size_t N = static_cast(framework::product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_dy[i] = T(data_dout[s].real, -data_dout[s].imag) * data_ddx[i]; } } if (tensor_ddout) { auto* data_ddout = tensor_ddout->mutable_data(ctx.GetPlace()); auto* data_x = tensor_x->data(); auto* data_y = tensor_y->data(); auto* data_ddx = tensor_ddx->data(); auto* data_ddy = tensor_ddy->data(); const framework::DDim& dim = tensor_dy->dims(); size_t N = static_cast(framework::product(dim)); auto step = dim[dim.size() - 1]; int s = -1; bool new_s = false; for (size_t i = 0; i < N; ++i) { if (0 == i % step) { ++s; new_s = true; } if (new_s) { data_ddout[s] = T(data_x[i].real, -data_x[i].imag) * data_ddy[i] + T(data_y[i].real, -data_y[i].imag) * data_ddx[i]; } else { data_ddout[s] += T(data_x[i].real, -data_x[i].imag) * data_ddy[i] + T(data_y[i].real, -data_y[i].imag) * data_ddx[i]; } new_s = false; } } #endif } }; template struct DotDoubleGradFunction> { void operator()(const Tensor* tensor_x, const Tensor* tensor_y, Tensor* tensor_dx, Tensor* tensor_dy, const Tensor* tensor_dout, const Tensor* tensor_ddx, const Tensor* tensor_ddy, Tensor* tensor_ddout, const paddle::framework::ExecutionContext& ctx) { #if defined(__NVCC__) || defined(__HIPCC__) if (1 == tensor_dout->dims().size()) { auto& dev_raw = ctx.template device_context(); auto& dev = *dev_raw.eigen_device(); auto dout = framework::EigenVector::Flatten(*tensor_dout); if (tensor_dx) { tensor_dx->mutable_data(ctx.GetPlace()); auto ddy = framework::EigenVector::Flatten(*tensor_ddy); Eigen::DSizes size(tensor_ddy->numel()); auto dx = framework::EigenVector::Flatten(*tensor_dx); dx.device(dev) = ddy * dout.broadcast(size); } if (tensor_dy) { tensor_dy->mutable_data(ctx.GetPlace()); auto ddx = framework::EigenVector::Flatten(*tensor_ddx); Eigen::DSizes size(tensor_ddx->numel()); auto dy = framework::EigenVector::Flatten(*tensor_dy); dy.device(dev) = ddx * dout.broadcast(size); } if (tensor_ddout) { tensor_ddout->mutable_data(ctx.GetPlace()); auto x = framework::EigenVector::Flatten(*tensor_x); auto y = framework::EigenVector::Flatten(*tensor_y); auto ddx = framework::EigenVector::Flatten(*tensor_ddx); auto ddy = framework::EigenVector::Flatten(*tensor_ddy); auto ddout = framework::EigenVector::Flatten(*tensor_ddout); ddout.device(dev) = (x * ddy + y * ddx).sum(); } } #else const auto* data_dout = tensor_dout->data(); if (tensor_dx) { auto* data_dx = tensor_dx->mutable_data(ctx.GetPlace()); const auto* data_ddy = tensor_ddy->data(); const framework::DDim& dim = tensor_dx->dims(); size_t N = static_cast(framework::product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_dx[i] = data_dout[s] * data_ddy[i]; } } if (tensor_dy) { auto* data_dy = tensor_dy->mutable_data(ctx.GetPlace()); const auto* data_ddx = tensor_ddx->data(); const framework::DDim& dim = tensor_dy->dims(); size_t N = static_cast(framework::product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_dy[i] = data_dout[s] * data_ddx[i]; } } if (tensor_ddout) { auto* data_ddout = tensor_ddout->mutable_data(ctx.GetPlace()); auto* data_x = tensor_x->data(); auto* data_y = tensor_y->data(); auto* data_ddx = tensor_ddx->data(); auto* data_ddy = tensor_ddy->data(); const framework::DDim& dim = tensor_dy->dims(); size_t N = static_cast(framework::product(dim)); auto step = dim[dim.size() - 1]; int s = -1; bool new_s = false; for (size_t i = 0; i < N; ++i) { if (0 == i % step) { ++s; new_s = true; } if (new_s) { data_ddout[s] = data_x[i] * data_ddy[i] + data_y[i] * data_ddx[i]; } else { data_ddout[s] += data_x[i] * data_ddy[i] + data_y[i] * data_ddx[i]; } new_s = false; } } #endif } }; template class MatMulV2GradKernel : public framework::OpKernel { public: void MatMul(const framework::ExecutionContext& context, const framework::Tensor& a, bool trans_a, const framework::Tensor& b, bool trans_b, framework::Tensor* out) const { out->mutable_data(context.GetPlace()); auto blas = math::GetBlas(context); auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a); auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b); if (a.dims().size() == 3 && b.dims().size() <= 2) { // the transpose_X must be false, if is true, the transpose cost much time if (!trans_a) { mat_dim_a.height_ *= mat_dim_a.batch_size_; mat_dim_a.batch_size_ = 0; } } blas.MatMul(a, mat_dim_a, b, mat_dim_b, static_cast(1), out, static_cast(0)); } void CalcInputGrad(const framework::ExecutionContext& context, const framework::Tensor& a, bool trans_a, bool is_fold_init_dims_a, const framework::Tensor& b, bool trans_b, bool is_fold_init_dims_b, framework::Tensor* out) const { if (out == nullptr) return; bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) && out->dims().size() == 2; if (!need_combine) { MatMul(context, a, trans_a, b, trans_b, out); } else { auto& ctx = context.template device_context(); MatMul(context, is_fold_init_dims_a ? FoldInitDims(a) : FoldHeadAndLastDims(ctx, a), trans_a, is_fold_init_dims_b ? FoldInitDims(b) : FoldHeadAndLastDims(ctx, b), trans_b, out); } } void Compute(const framework::ExecutionContext& ctx) const override { bool transpose_x = ctx.Attr("trans_x"); bool transpose_y = ctx.Attr("trans_y"); auto x = *ctx.Input("X"); auto y = *ctx.Input("Y"); auto dout = *ctx.Input(framework::GradVarName("Out")); framework::Tensor y_conj(y.type()); framework::Tensor x_conj(y.type()); // get dims std::vector x_dims = vectorize(x.dims()); std::vector y_dims = vectorize(y.dims()); std::vector dout_dims = vectorize(dout.dims()); int x_ndim = x_dims.size(); int y_ndim = y_dims.size(); int ndim = dout_dims.size(); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); // Case1 : x's or y's dim = 1 if (x_ndim == 1 && y_ndim == 1) { if (dx) dx->mutable_data(ctx.GetPlace()); if (dy) dy->mutable_data(ctx.GetPlace()); if (dout.numel() == 1) { DotGradFunction()(&x, &y, &dout, dx, dy, ctx); return; } } bool is_broadcast = true; if (x_ndim <= 2 || y_ndim <= 2) { is_broadcast = false; } else if (x_ndim != y_ndim) { is_broadcast = true; } else { is_broadcast = !std::equal(x_dims.cbegin(), x_dims.cbegin() + x_ndim - 2, y_dims.cbegin()); } // Case2: no broadcast or no batch size, it aims to speed and it is same as // matmul in old version. if (!is_broadcast) { ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y); framework::DDim dx_dims; if (dx) { dx_dims = dx->dims(); if (dx_dims != x.dims()) { dx->Resize(x.dims()); } // for complex ConjHelper conj_helper(ctx); conj_helper(y, y_conj); } framework::DDim dy_dims; if (dy) { dy_dims = dy->dims(); if (dy_dims != y.dims()) { dy->Resize(y.dims()); } // for complex ConjHelper conj_helper(ctx); conj_helper(x, x_conj); } if (transpose_x && transpose_y) { CalcInputGrad(ctx, y_conj, true, true, dout, true, false, dx); CalcInputGrad(ctx, dout, true, true, x_conj, true, false, dy); } else if (transpose_x) { CalcInputGrad(ctx, y_conj, false, false, dout, true, false, dx); CalcInputGrad(ctx, x_conj, false, false, dout, false, true, dy); } else if (transpose_y) { CalcInputGrad(ctx, dout, false, false, y_conj, false, true, dx); CalcInputGrad(ctx, dout, true, true, x_conj, false, true, dy); } else { CalcInputGrad(ctx, dout, false, false, y_conj, true, false, dx); CalcInputGrad(ctx, x_conj, true, true, dout, false, true, dy); } if (dx) { if (dx_dims != x.dims()) { dx->Resize(dx_dims); } } if (dy) { if (dy_dims != y.dims()) { dy->Resize(dy_dims); } } } else { // Case3: broadcast. It need cost much time to reduce sum for the // broadcast and wastes the memory. // So we should avoid the case in reality. VLOG(3) << "It need cost much time to reduce sum for the broadcast and " "wastes the memory. So we should avoid the case in reality"; Tensor dx_help, dy_help; ConjHelper conj_helper(ctx); conj_helper(x, x_conj); conj_helper(y, y_conj); if (transpose_x) { if (transpose_y) { // X'Y': dA = Y'G', dB = G'X' if (dx) MatMulFunction(&y_conj, &dout, y_dims, dout_dims, &dx_help, true, true, ctx); if (dy) MatMulFunction(&dout, &x_conj, dout_dims, x_dims, &dy_help, true, true, ctx); } else { // X'Y: dX = YG', dY = XG if (dx) MatMulFunction(&y_conj, &dout, y_dims, dout_dims, &dx_help, false, true, ctx); if (dy) MatMulFunction(&x_conj, &dout, x_dims, dout_dims, &dy_help, false, false, ctx); } } else { if (transpose_y) { // XY': dX = GY, dY = G'X if (dx) MatMulFunction(&dout, &y_conj, dout_dims, y_dims, &dx_help, false, false, ctx); if (dy) MatMulFunction(&dout, &x_conj, dout_dims, x_dims, &dy_help, true, false, ctx); } else { // XY: dX = GY', dY = X'G if (dx) MatMulFunction(&dout, &y_conj, dout_dims, y_dims, &dx_help, false, true, ctx); if (dy) MatMulFunction(&x_conj, &dout, x_dims, dout_dims, &dy_help, true, false, ctx); } } // get help dims const std::vector dx_help_dims = vectorize(dx_help.dims()); const std::vector dy_help_dims = vectorize(dy_help.dims()); std::vector dx_broadcast_dims(ndim); std::vector dy_broadcast_dims(ndim); std::fill(dx_broadcast_dims.data(), dx_broadcast_dims.data() + ndim - x_ndim, 1); std::fill(dy_broadcast_dims.data(), dy_broadcast_dims.data() + ndim - y_ndim, 1); std::copy(x_dims.data(), x_dims.data() + x_ndim, dx_broadcast_dims.data() + ndim - x_ndim); std::copy(y_dims.data(), y_dims.data() + y_ndim, dy_broadcast_dims.data() + ndim - y_ndim); std::vector dx_reduce_dims; std::vector dy_reduce_dims; for (int idx = 0; idx <= ndim - 3; idx++) { if (dx_help_dims[idx] != 1 && dx_broadcast_dims[idx] == 1) { dx_reduce_dims.push_back(idx); } if (dy_help_dims[idx] != 1 && dy_broadcast_dims[idx] == 1) { dy_reduce_dims.push_back(idx); } } // reduce sum to get grad by ReduceSum if (dx) { if (dx_reduce_dims.empty()) { *dx = std::move(dx_help); } else { ReduceSumForMatmulGrad(&dx_help, dx, dx_reduce_dims, ctx); } dx->Resize(x.dims()); } if (dy) { if (dy_reduce_dims.empty()) { *dy = std::move(dy_help); } else { ReduceSumForMatmulGrad(&dy_help, dy, dy_reduce_dims, ctx); } dy->Resize(y.dims()); } // Get the OutputGrad(out) } } }; template class MatMulV2DoubleGradKernel : public framework::OpKernel { public: void MatMul(const framework::ExecutionContext& context, const framework::Tensor& a, bool trans_a, const framework::Tensor& b, bool trans_b, framework::Tensor* out, bool flag) const { out->mutable_data(context.GetPlace()); auto blas = math::GetBlas(context); auto mat_dim_a = math::CreateMatrixDescriptor(a.dims(), 0, trans_a); auto mat_dim_b = math::CreateMatrixDescriptor(b.dims(), 0, trans_b); if (a.dims().size() == 3 && b.dims().size() <= 2) { // the transpose_X must be false, if is true, the transpose cost much time if (!trans_a) { mat_dim_a.height_ *= mat_dim_a.batch_size_; mat_dim_a.batch_size_ = 0; } } blas.MatMul(a, mat_dim_a, b, mat_dim_b, static_cast(1), out, static_cast(flag)); } void CalcInputGrad(const framework::ExecutionContext& context, const framework::Tensor& a, bool trans_a, bool is_fold_init_dims_a, const framework::Tensor& b, bool trans_b, bool is_fold_init_dims_b, framework::Tensor* out, bool flag) const { if (out == nullptr) return; bool need_combine = (a.dims().size() == 3 || b.dims().size() == 3) && out->dims().size() == 2; if (!need_combine) { MatMul(context, a, trans_a, b, trans_b, out, flag); } else { auto& ctx = context.template device_context(); MatMul(context, is_fold_init_dims_a ? FoldInitDims(a) : FoldHeadAndLastDims(ctx, a), trans_a, is_fold_init_dims_b ? FoldInitDims(b) : FoldHeadAndLastDims(ctx, b), trans_b, out, flag); } } void Compute(const framework::ExecutionContext& context) const override { auto x = *context.Input("X"); auto y = *context.Input("Y"); auto dout = *context.Input("DOut"); auto* ddx = context.Input("DDX"); auto* ddy = context.Input("DDY"); auto* dx = context.Output("DX"); auto* dy = context.Output("DY"); auto* ddout = context.Output("DDOut"); bool transpose_x = context.Attr("trans_x"); bool transpose_y = context.Attr("trans_y"); // Get dims from the input x, y, output_grad std::vector x_dims = vectorize(x.dims()); std::vector y_dims = vectorize(y.dims()); std::vector dout_dims = vectorize(dout.dims()); framework::Tensor x_conj(x.type()); framework::Tensor y_conj(y.type()); framework::Tensor dout_conj(dout.type()); int x_ndim = x_dims.size(); int y_ndim = y_dims.size(); int ndim = dout_dims.size(); // Case1 : x's or y's dim = 1 if (x_ndim == 1 && y_ndim == 1) { DotDoubleGradFunction()(&x, &y, dx, dy, &dout, ddx, ddy, ddout, context); return; } bool is_broadcast = true; if (x_ndim <= 2 || y_ndim <= 2) { is_broadcast = false; } else if (x_ndim != y_ndim) { is_broadcast = true; } else { is_broadcast = !std::equal(x_dims.cbegin(), x_dims.cbegin() + x_ndim - 2, y_dims.cbegin()); } if (!is_broadcast) { // Case2: no broadcast or no batch size ReshapeXYOutIntoMatrixSequence(&x, &y, &dout, transpose_x, transpose_y); framework::DDim dx_dims; ConjHelper conj_helper(context); if (dx) { dx_dims = dx->dims(); if (dx_dims != x.dims()) { dx->Resize(x.dims()); } } framework::DDim dy_dims; if (dy) { dy_dims = dy->dims(); if (dy_dims != y.dims()) { dy->Resize(y.dims()); } } framework::DDim ddout_dims; if (ddout) { ddout_dims = ddout->dims(); if (ddout_dims != dout.dims()) { ddout->Resize(dout.dims()); } } if (ddx || ddy) { ConjHelper conj_helper(context); conj_helper(dout, dout_conj); } if (ddout) { ConjHelper conj_helper(context); conj_helper(x, x_conj); conj_helper(y, y_conj); } bool ddout_flag = false; if (ddx) { auto ddx_mat = *ddx; if (ddx_mat.dims() != x.dims()) { ddx_mat.Resize(x.dims()); } if (dy) { if (transpose_x && transpose_y) { // dy = dout' * ddx' CalcInputGrad(context, dout_conj, true, true, ddx_mat, true, false, dy, false); } else if (transpose_x) { // dy = ddx * dout CalcInputGrad(context, ddx_mat, false, false, dout_conj, false, true, dy, false); } else if (transpose_y) { // dy = dout' * ddx CalcInputGrad(context, dout_conj, true, true, ddx_mat, false, true, dy, false); } else { // dy = ddx' * dout CalcInputGrad(context, ddx_mat, true, true, dout_conj, false, true, dy, false); } } if (ddout) { CalcInputGrad(context, ddx_mat, transpose_x, true, y_conj, transpose_y, false, ddout, ddout_flag); ddout_flag = true; } } if (ddy) { auto ddy_mat = *ddy; if (ddy_mat.dims() != y.dims()) { ddy_mat.Resize(y.dims()); } if (dx) { if (transpose_x && transpose_y) { // dx = ddy' * dout' CalcInputGrad(context, ddy_mat, true, true, dout_conj, true, false, dx, false); } else if (transpose_x) { // dx = ddy * dout' CalcInputGrad(context, ddy_mat, false, false, dout_conj, true, false, dx, false); } else if (transpose_y) { // dx = dout * ddy CalcInputGrad(context, dout_conj, false, false, ddy_mat, false, true, dx, false); } else { // dx = dout * ddy' CalcInputGrad(context, dout_conj, false, false, ddy_mat, true, false, dx, false); } } if (ddout) { CalcInputGrad(context, x_conj, transpose_x, true, ddy_mat, transpose_y, false, ddout, ddout_flag); } } if (dx) { if (dx_dims != x.dims()) { dx->Resize(dx_dims); } } if (dy) { if (dy_dims != y.dims()) { dy->Resize(dy_dims); } } if (ddout) { if (ddout_dims != dout.dims()) { ddout->Resize(ddout_dims); } } } else { // Case3: broadcast. It need cost much time to reduce sum for the // broadcast and wastes the memory. // So we should avoid the case in reality. VLOG(3) << "It need cost much time to reduce sum for the broadcast and " "wastes the memory. So we should avoid the case in reality"; framework::Tensor ddy_conj(ddx->type()); framework::Tensor ddx_conj(ddy->type()); Tensor dx_help, dy_help; if (dx || dy) { ConjHelper conj_helper(context); conj_helper(dout, dout_conj); } if (ddout) { ConjHelper conj_helper(context); conj_helper(x, x_conj); conj_helper(y, y_conj); } if (transpose_x) { if (transpose_y) { if (dx) MatMulFunction(ddy, &dout_conj, y_dims, dout_dims, &dx_help, true, true, context); if (dy) MatMulFunction(&dout_conj, ddx, dout_dims, x_dims, &dy_help, true, true, context); } else { if (dx) MatMulFunction(ddy, &dout_conj, y_dims, dout_dims, &dx_help, false, true, context); if (dy) MatMulFunction(ddx, &dout_conj, x_dims, dout_dims, &dy_help, false, false, context); } } else { if (transpose_y) { if (dx) MatMulFunction(&dout_conj, ddy, dout_dims, y_dims, &dx_help, false, false, context); if (dy) MatMulFunction(&dout_conj, ddx, dout_dims, x_dims, &dy_help, true, false, context); } else { if (dx) MatMulFunction(&dout_conj, ddy, dout_dims, y_dims, &dx_help, false, true, context); if (dy) MatMulFunction(ddx, &dout_conj, x_dims, dout_dims, &dy_help, true, false, context); } } // get help dims const std::vector dx_help_dims = vectorize(dx_help.dims()); const std::vector dy_help_dims = vectorize(dy_help.dims()); std::vector dx_broadcast_dims(ndim); std::vector dy_broadcast_dims(ndim); std::fill(dx_broadcast_dims.data(), dx_broadcast_dims.data() + ndim - x_ndim, 1); std::fill(dy_broadcast_dims.data(), dy_broadcast_dims.data() + ndim - y_ndim, 1); std::copy(x_dims.data(), x_dims.data() + x_ndim, dx_broadcast_dims.data() + ndim - x_ndim); std::copy(y_dims.data(), y_dims.data() + y_ndim, dy_broadcast_dims.data() + ndim - y_ndim); std::vector dx_reduce_dims; std::vector dy_reduce_dims; for (int idx = 0; idx <= ndim - 3; idx++) { if (dx_help_dims[idx] != 1 && dx_broadcast_dims[idx] == 1) { dx_reduce_dims.push_back(idx); } if (dy_help_dims[idx] != 1 && dy_broadcast_dims[idx] == 1) { dy_reduce_dims.push_back(idx); } } // Reduce sum to get grad by ReduceSum if (dx) { if (dx_reduce_dims.empty()) { *dx = std::move(dx_help); } else { ReduceSumForMatmulGrad(&dx_help, dx, dx_reduce_dims, context); } dx->Resize(x.dims()); } if (dy) { if (dy_reduce_dims.empty()) { *dy = std::move(dy_help); } else { ReduceSumForMatmulGrad(&dy_help, dy, dy_reduce_dims, context); } dy->Resize(y.dims()); } if (ddout) { // Caluate the gradient of OutputGrad(Out) MatMulFunction(ddx, &y_conj, x_dims, y_dims, ddout, transpose_x, transpose_y, context); MatMulFunction(&x_conj, ddy, x_dims, y_dims, ddout, transpose_x, transpose_y, context, true); } } } }; } // namespace operators } // namespace paddle