// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "paddle/fluid/framework/infershape_utils.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/phi/core/infermeta_utils.h" #include "paddle/phi/infermeta/multiary.h" namespace paddle { namespace operators { class DeformableConvOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("Input", "(Tensor) The input of deformable conv op. " "The shape of input is " "[N, channel_in, H, W]"); AddInput("Offset", "(Tensor) The input offset. " "The shape of the offset is " "[N, deformable_groups * kernel_w * kernel_h * 2, H, W"); AddInput("Mask", "(Tensor) The input mask. " "The shape of the mask is " "[N, deformable_groups * kernel_w * kernel_h, H, W]."); AddInput("Filter", "(Tensor) The Input Filter " "The shape of the wight is " "[num_filters, channel_in, kernel_h, kernel_w."); AddOutput("Output", "(Tensor) The output. " "The shape of the output tensor is " "[N, num_filters, out_height, out_width]]."); AddAttr>("strides", "(vector default:{1, 1}), the " "strides(h_stride, w_stride) of " "convolution operator.") .SetDefault({1, 1}); AddAttr>("paddings", "(vector default:{0,0}), the " "paddings(h_pad, w_pad) of " "convolution operator. ") .SetDefault({0, 0}); AddAttr>("dilations", "(vector default:{1, 1}), the " "dilations(h_dilation, w_dilation) of " "convolution operator.") .SetDefault({1, 1}); AddAttr( "groups", "(int default:1), the groups number of the convolution operator. " "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: " "when group=2, the first half of the filters is only connected to the " "first half of the input channels, while the second half of the " "filters " "is only connected to the second half of the input channels.") .SetDefault(1); AddAttr("deformable_groups", "(int default:1), the number of the deformable groups.") .SetDefault(1); AddAttr("im2col_step", "im2col maximum number of image per computation") .SetDefault(64); AddComment(R"DOC( **Deformable Convolution Operator** Compute 2-D deformable convolution on 4-D input. Given input image x, output feature map y, the deformable convolution operation can be expressed as follow: $$ y(p) = \\sum_{k=1}^{K}{w_k * x(p + p_k + \\Delta p_k) * \\Delta m_k} $$ Where $$\\Delta p_k$$ and $$\Delta m_k$$ are the learnable offset and modulation scalar for the k-th location, respectively. Refer to 'Deformable ConvNets v2: More Deformable, Better Results ' Example: Input: Input shape: $(N, C_{in}, H_{in}, W_{in})$ Filter shape: $(C_{out}, C_{in}, H_f, W_f)$ Offset shape: $(N, 2 * deformable_groups, * H_f * W_f, H_{out}, W_{out})$ Mask shape: $(N, deformable_groups * H_f * W_f, H_{out}, W_{out})$ Output: Output shape: $(N, C_{out}, H_{out}, W_{out})$ where $H_{out}, W_{out}$ must be equal to $H_{in}, W_{in}$ respectively. Where $$ H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\ W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1 $$ )DOC"); } }; class DeformableConvOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: phi::KernelKey GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.device_context().GetPlace()); } }; template class DeformableConvGradOpMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("deformable_conv_grad"); op->SetInput("Input", this->Input("Input")); op->SetInput("Filter", this->Input("Filter")); op->SetInput("Offset", this->Input("Offset")); op->SetInput("Mask", this->Input("Mask")); op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output")); op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input")); op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter")); op->SetOutput(framework::GradVarName("Offset"), this->InputGrad("Offset")); op->SetOutput(framework::GradVarName("Mask"), this->InputGrad("Mask")); op->SetAttrMap(this->Attrs()); } }; class DeformableConvGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { auto in_dims = ctx->GetInputDim("Input"); auto filter_dims = ctx->GetInputDim("Filter"); auto offset_dims = ctx->GetInputDim("Offset"); auto mask_dims = ctx->GetInputDim("Mask"); OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Output")), "Input", "Output@Grad", "deformable_conv_grad"); if (ctx->HasOutput(framework::GradVarName("Input"))) { ctx->SetOutputDim(framework::GradVarName("Input"), in_dims); } if (ctx->HasOutput(framework::GradVarName("Filter"))) { ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims); } if (ctx->HasOutput(framework::GradVarName("Offset"))) { ctx->SetOutputDim(framework::GradVarName("Offset"), offset_dims); } if (ctx->HasOutput(framework::GradVarName("Mask"))) { ctx->SetOutputDim(framework::GradVarName("Mask"), mask_dims); } } protected: phi::KernelKey GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return phi::KernelKey(OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.device_context().GetPlace()); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; DECLARE_INFER_SHAPE_FUNCTOR(deformable_conv, DeformableConvInferShapeFunctor, PD_INFER_META(phi::DeformableConvInferMeta)); REGISTER_OPERATOR(deformable_conv, ops::DeformableConvOp, ops::DeformableConvOpMaker, ops::DeformableConvGradOpMaker, ops::DeformableConvGradOpMaker, DeformableConvInferShapeFunctor); REGISTER_OPERATOR(deformable_conv_grad, ops::DeformableConvGradOp);