# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os os.environ['CPU_NUM'] = str(1) import unittest import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid import compiler class TestReaderReset(unittest.TestCase): def prepare_data(self): def fake_data_generator(): for n in range(self.total_ins_num): yield np.ones(self.ins_shape) * n, n return fake_data_generator def setUp(self): self.use_cuda = fluid.core.is_compiled_with_cuda() self.ins_shape = [3] self.batch_size = 5 self.batch_num = 20 self.total_ins_num = self.batch_size * self.batch_num self.test_pass_num = 100 self.prepare_data() def main(self, with_double_buffer): main_prog = fluid.Program() startup_prog = fluid.Program() with fluid.program_guard(main_prog, startup_prog): image = paddle.static.data( name='image', shape=[-1] + self.ins_shape, dtype='float32' ) label = paddle.static.data( name='label', shape=[-1, 1], dtype='int64' ) data_reader_handle = fluid.io.PyReader( feed_list=[image, label], capacity=16, iterable=False, use_double_buffer=with_double_buffer, ) fetch_list = [image.name, label.name] place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) data_reader_handle.decorate_sample_list_generator( paddle.batch(self.prepare_data(), batch_size=self.batch_size) ) train_cp = compiler.CompiledProgram(main_prog) batch_id = 0 pass_count = 0 while pass_count < self.test_pass_num: data_reader_handle.start() try: while True: data_val, label_val = exe.run( train_cp, fetch_list=fetch_list, return_numpy=True ) ins_num = data_val.shape[0] broadcasted_label = np.ones( (ins_num,) + tuple(self.ins_shape) ) * label_val.reshape((ins_num, 1)) self.assertEqual(data_val.all(), broadcasted_label.all()) batch_id += 1 except fluid.core.EOFException: data_reader_handle.reset() pass_count += 1 self.assertEqual(pass_count * self.batch_num, batch_id) self.assertEqual(pass_count, self.test_pass_num) def test_all(self): self.main(with_double_buffer=False) self.main(with_double_buffer=True) if __name__ == '__main__': unittest.main()