# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle from paddle.fluid.layer_helper import LayerHelper from paddle.incubate.autograd.primrules import _jvp, _transpose paddle.enable_static() # --------------------- Test linearize rules ----------------------- # class TestAddPJVPAndTranspose(unittest.TestCase): def setUp(self): self.main_program = paddle.static.Program() self.startup_program = paddle.static.Program() self.layer_help = LayerHelper('TestPrim2Orig') with paddle.static.program_guard( self.main_program, self.startup_program ): self.init_data() def init_data(self): # Set prim op self.op_type = 'add_p' X = paddle.static.data(name='X', shape=[2, 2], dtype='float') Y = paddle.static.data(name='Y', shape=[2, 2], dtype='float') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[2, 2], dtype='float') Y_DOT = paddle.static.data(name='Y_DOT', shape=[2, 2], dtype='float') self.jvp_args = (X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} # Set transpose check_dot = lambda v: True Z_BAR = paddle.static.data(name='Z_BAR', shape=[2, 2], dtype='float') self.transpose_args = (check_dot, Z_BAR) self.transpose_out_shape_map = {0: X, 1: Y} self.all_ops = [ # prim op: 'add_p', # jvp op: 'add_p', # transpose op: ] def test_op(self): with paddle.static.program_guard( self.main_program, self.startup_program ): op = self.layer_help.append_op( type=self.op_type, inputs=self.prim_input, outputs=self.prim_output, attrs=self.prim_attrs, ) jvp_out = _jvp(op, *self.jvp_args) jvp_out = paddle.utils.flatten(jvp_out) for k, v in self.jvp_out_shape_map.items(): self.assertEqual(jvp_out[k].shape, v.shape) # Some prim ops dont have transpose rule if hasattr(self, 'transpose_args'): transpose_out = _transpose(op, *self.transpose_args) transpose_out = paddle.utils.flatten(transpose_out) for k, v in self.transpose_out_shape_map.items(): self.assertEqual(transpose_out[k].shape, v.shape) all_ops = [op.type for op in self.main_program.block(0).ops] self.assertEqual(sorted(all_ops), sorted(self.all_ops)) class TestSubPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'sub_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='int64') Y = paddle.static.data(name='Y', shape=[5, 6], dtype='int64') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64') Y_DOT = paddle.static.data(name='Y_DOT', shape=[5, 6], dtype='int64') self.jvp_args = (X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} # Set transpose check_dot = lambda v: True Z_BAR = paddle.static.data(name='Z_BAR', shape=[5, 6], dtype='int64') self.transpose_args = (check_dot, Z_BAR) self.transpose_out_shape_map = {0: X, 1: Y} self.all_ops = [ # prim op: 'sub_p', # jvp op: 'sub_p', # transpose op: 'fill_constant_p', 'sub_p', ] class TestMulPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'mul_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='int64') Y = paddle.static.data(name='Y', shape=[5, 6], dtype='int64') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64') Y_DOT = paddle.static.data(name='Y_DOT', shape=[5, 6], dtype='int64') self.jvp_args = (X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} # Set transpose check_dot = lambda v: v is X Z_BAR = paddle.static.data(name='Z_BAR', shape=[5, 6], dtype='int64') self.transpose_args = (check_dot, Z_BAR) self.transpose_out_shape_map = { 0: X, } self.all_ops = [ # prim op: 'mul_p', # jvp op: 'mul_p', 'mul_p', 'add_p', # transpose op: 'mul_p', ] class TestDivPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'div_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='int64') Y = paddle.static.data(name='Y', shape=[5, 6], dtype='int64') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64') Y_DOT = paddle.static.data(name='Y_DOT', shape=[5, 6], dtype='int64') self.jvp_args = (X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} # Set transpose check_dot = lambda v: v is X Z_BAR = paddle.static.data(name='Z_BAR', shape=[5, 6], dtype='int64') self.transpose_args = (check_dot, Z_BAR) self.transpose_out_shape_map = { 0: X, } self.all_ops = [ # prim op: 'div_p', # jvp op: 'div_p', 'div_p', 'mul_p', 'mul_p', 'sub_p', # transpose op: 'div_p', ] class TestSqrtPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'sqrt_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64') self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} self.all_ops = [ # prim op: 'sqrt_p', # jvp op: 'div_p', 'mul_p', 'fill_constant_p', # 'sqrt_p', # transpose op: ] class TestRSqrtPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'rsqrt_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64') self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} self.all_ops = [ # prim op: 'rsqrt_p', # jvp op: 'div_p', 'div_p', 'mul_p', 'fill_constant_p', # 'sqrt_p', # transpose op: ] class TestTanhPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'tanh_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64') self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} self.all_ops = [ # prim op: 'tanh_p', # jvp op: 'mul_p', 'sub_p', 'fill_constant_p', 'mul_p', # transpose op: ] class TestSinPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'sin_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64') self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} self.all_ops = [ # prim op: 'sin_p', # jvp op: 'mul_p', 'cos_p', # transpose op: ] class TestCosPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'cos_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64') self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} self.all_ops = [ # prim op: 'cos_p', # jvp op: 'mul_p', 'sin_p', 'fill_constant_p', 'sub_p' # transpose op: ] class TestExpPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'exp_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64') self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} self.all_ops = [ # prim op: 'exp_p', # jvp op: 'mul_p', # transpose op: ] class TestErfPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'erf_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64') self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} self.all_ops = [ # prim op: 'erf_p', # jvp op: 'exp_p', 'fill_constant_p', 'fill_constant_p', 'fill_constant_p', 'mul_p', 'mul_p', 'pow_p', 'sub_p', # transpose op: ] class TestAbsPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'abs_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64') self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} self.all_ops = [ # prim op: 'abs_p', # jvp op: 'select_p', 'ge_p', 'fill_constant_p', 'fill_constant_p', 'sub_p', # transpose op: ] class TestCastPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'cast_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {'dtype': paddle.float64} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64') self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} # Set transpose check_dot = lambda v: True Y_BAR = paddle.static.data(name='Y_BAR', shape=[5, 6], dtype='float') self.transpose_args = (check_dot, Y_BAR) self.transpose_out_shape_map = {0: X} self.all_ops = [ # prim op: 'cast_p', # jvp op: 'cast_p', # transpose op: 'cast_p', ] class TestLogPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'log_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='int64') self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} self.all_ops = [ # prim op: 'log_p', # jvp op: 'div_p', # transpose op: ] class TestReshapePJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'reshape_p' X = paddle.static.data(name='X', shape=[8, 8], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {'shape': [2, 32]} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[8, 8], dtype='int64') self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} # Set transpose check_dot = lambda v: v is X Y_BAR = paddle.static.data(name='Y_BAR', shape=[2, 32], dtype='int64') self.transpose_args = (check_dot, Y_BAR) self.transpose_out_shape_map = { 0: X, } self.all_ops = [ # prim op: 'reshape_p', # jvp op: 'reshape_p', # transpose op: 'reshape_p', ] class TestBroadcastPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'broadcast_p' X = paddle.static.data(name='X', shape=[10, 1], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {'shape': [2, 10, 7]} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[10, 7], dtype='int64') self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} # Set transpose check_dot = lambda v: v is X Y_BAR = paddle.static.data( name='Y_BAR', shape=[2, 10, 7], dtype='int64' ) self.transpose_args = (check_dot, Y_BAR) self.transpose_out_shape_map = { 0: X, } self.all_ops = [ # prim op: 'broadcast_p', # jvp op: 'broadcast_p', # transpose op: 'reduce_sum_p', 'reshape_p', ] class TestTransposePJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'transpose_p' X = paddle.static.data(name='X', shape=[2, 3, 4, 5], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {'axis': [0, 2, 3, 1]} # Set JVP X_DOT = paddle.static.data( name='X_DOT', shape=[2, 3, 4, 5], dtype='int64' ) self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} # Set transpose check_dot = lambda v: v is X Y_BAR = paddle.static.data( name='Y_BAR', shape=[2, 4, 5, 3], dtype='int64' ) self.transpose_args = (check_dot, Y_BAR) self.transpose_out_shape_map = { 0: X, } self.all_ops = [ # prim op: 'transpose_p', # jvp op: 'transpose_p', # transpose op: 'transpose_p', ] class TestSplitPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'split_p' X = paddle.static.data(name='X', shape=[2, 7, 10], dtype='int64') self.prim_input = { 'X': X, } self.prim_output = { 'YS': [ self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) for i in range(4) ] } self.prim_attrs = {'num_or_sections': [2, 3, 4, 1], 'axis': 2} # Set JVP X_DOT = paddle.static.data( name='X_DOT', shape=[2, 7, 10], dtype='int64' ) self.jvp_args = (X_DOT,) self.jvp_out_shape_map = { 0: self.prim_output['YS'][0], 1: self.prim_output['YS'][1], 2: self.prim_output['YS'][2], 3: self.prim_output['YS'][3], } # Set transpose check_dot = lambda v: v is X YS_BAR = [ paddle.static.data(name='Y_BAR1', shape=[2, 7, 2], dtype='int64'), paddle.static.data(name='Y_BAR2', shape=[2, 7, 3], dtype='int64'), paddle.static.data(name='Y_BAR3', shape=[2, 7, 4], dtype='int64'), paddle.static.data(name='Y_BAR4', shape=[2, 7, 1], dtype='int64'), ] self.transpose_args = (check_dot, YS_BAR) self.transpose_out_shape_map = { 0: X, } self.all_ops = [ # prim op: 'split_p', # jvp op: 'split_p', # transpose op: 'concat_p', ] class TestConcatPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'concat_p' X = paddle.static.data(name='X', shape=[3, 9, 5], dtype='float64') Y = paddle.static.data(name='Y', shape=[3, 2, 5], dtype='float64') Z = paddle.static.data(name='Z', shape=[3, 3, 5], dtype='float64') self.prim_input = { 'XS': [X, Y, Z], } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {'axis': 1} # Set JVP XS_DOT = [ paddle.static.data(name='X_DOT1', shape=[3, 9, 5], dtype='float64'), paddle.static.data(name='X_DOT2', shape=[3, 2, 5], dtype='float64'), paddle.static.data(name='X_DOT3', shape=[3, 3, 5], dtype='float64'), ] self.jvp_args = (XS_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} # Set transpose check_dot = lambda v: v is X or v is Y or v is Z Y_BAR = paddle.static.data( name='Y_BAR', shape=[3, 14, 5], dtype='float64' ) self.transpose_args = (check_dot, Y_BAR) self.transpose_out_shape_map = { 0: X, 1: Y, 2: Z, } self.all_ops = [ # prim op: 'concat_p', # jvp op: 'concat_p', # transpose op: 'split_p', ] class TestReduceSumPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'reduce_sum_p' X = paddle.static.data(name='X', shape=[2, 3, 4, 5], dtype='float64') self.prim_input = {'X': X} self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {'axis': [2], 'keepdim': False} # Set JVP X_DOT = paddle.static.data( name='X_DOT1', shape=[2, 3, 4, 5], dtype='float64' ) self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} # Set transpose check_dot = lambda v: v is X Y_BAR = paddle.static.data( name='Y_BAR', shape=[2, 3, 5], dtype='float64' ) self.transpose_args = (check_dot, Y_BAR) self.transpose_out_shape_map = { 0: X, } self.all_ops = [ # prim op: 'reduce_sum_p', # jvp op: 'reduce_sum_p', # transpose op: 'reshape_p', 'broadcast_p', ] class TestMatmulPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'matmul_p' X = paddle.static.data(name='X', shape=[2, 3], dtype='float64') Y = paddle.static.data(name='Y', shape=[3, 4], dtype='float64') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[2, 3], dtype='float64') Y_DOT = paddle.static.data(name='Y_DOT', shape=[3, 4], dtype='float64') self.jvp_args = (X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} # Set transpose check_dot = lambda v: v is X Z_BAR = paddle.static.data(name='Z_BAR', shape=[2, 4], dtype='float64') self.transpose_args = (check_dot, Z_BAR) self.transpose_out_shape_map = { 0: X, } self.all_ops = [ # prim op: 'matmul_p', # jvp op: 'matmul_p', 'matmul_p', 'add_p', # transpose op: 'matmul_p', 'transpose_p', ] class TestSliceSelectPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'slice_select_p' X = paddle.static.data(name='X', shape=[3, 20], dtype='float64') self.prim_input = { 'X': X, } self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = { 'axis': [1], 'starts': [0], 'ends': [20], 'strides': [2], } # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[3, 20], dtype='float64') self.jvp_args = (X_DOT,) self.jvp_out_shape_map = {0: self.prim_output['Y']} # Set transpose check_dot = lambda v: v is X Y_BAR = paddle.static.data(name='Y_BAR', shape=[3, 10], dtype='float64') self.transpose_args = (check_dot, Y_BAR) self.transpose_out_shape_map = { 0: X, } self.all_ops = [ # prim op: 'slice_select_p', # jvp op: 'slice_select_p', # transpose op: 'slice_assign_p', 'fill_constant_p', ] class TestSliceAssignPJVPAndTranspose1(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'slice_assign_p' X = paddle.static.data(name='X', shape=[3, 20], dtype='float64') Y = paddle.static.data(name='Y', shape=[3, 5], dtype='float64') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = { 'axis': [1], 'starts': [0], 'ends': [10], 'strides': [2], } # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[3, 20], dtype='float64') Y_DOT = paddle.static.data(name='Y_DOT', shape=[3, 5], dtype='float64') self.jvp_args = (X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} # Set transpose check_dot = lambda v: v is X Z_BAR = paddle.static.data(name='Z_BAR', shape=[3, 20], dtype='float64') self.transpose_args = (check_dot, Z_BAR) self.transpose_out_shape_map = {0: X} self.all_ops = [ # prim op: 'slice_assign_p', # jvp op: 'slice_assign_p', "slice_assign_p", "add_p", "fill_constant_p", "fill_constant_p", # transpose op: 'slice_assign_p', 'fill_constant_p', ] class TestSliceAssignPJVPAndTranspose2(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'slice_assign_p' X = paddle.static.data(name='X', shape=[3, 20], dtype='float64') Y = paddle.static.data(name='Y', shape=[3, 5], dtype='float64') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = { 'axis': [1], 'starts': [0], 'ends': [10], 'strides': [2], } # Set JVP Y_DOT = paddle.static.data(name='Y_DOT', shape=[3, 5], dtype='float64') self.jvp_args = (None, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} # Set transpose check_dot = lambda v: v is Y Z_BAR = paddle.static.data(name='Z_BAR', shape=[3, 20], dtype='float64') self.transpose_args = (check_dot, Z_BAR) self.transpose_out_shape_map = {1: Y} self.all_ops = [ # prim op: 'slice_assign_p', # jvp op: 'slice_assign_p', "fill_constant_p", # transpose op: 'slice_select_p', 'fill_constant_p', ] class TestSliceAssignPJVPAndTranspose3(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'slice_assign_p' X = paddle.static.data(name='X', shape=[3, 20], dtype='float64') Y = paddle.static.data(name='Y', shape=[3, 5], dtype='float64') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = { 'axis': [1], 'starts': [0], 'ends': [10], 'strides': [2], } # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[3, 20], dtype='float64') self.jvp_args = (X_DOT, None) self.jvp_out_shape_map = {0: self.prim_output['Z']} # Set transpose check_dot = lambda v: v is X Z_BAR = paddle.static.data(name='Z_BAR', shape=[3, 20], dtype='float64') self.transpose_args = (check_dot, Z_BAR) self.transpose_out_shape_map = {0: X} self.all_ops = [ # prim op: 'slice_assign_p', # jvp op: 'slice_assign_p', "fill_constant_p", # transpose op: 'slice_assign_p', 'fill_constant_p', ] class TestGatherPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'gather_p' X = paddle.static.data(name='X', shape=[9, 5], dtype='float64') IndexTensor = paddle.static.data( name='IndexTensor', shape=[3], dtype='int32' ) self.prim_input = {'X': X, 'IndexTensor': IndexTensor} self.prim_output = { 'Y': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {'axis': 1} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[9, 5], dtype='float64') self.jvp_args = ( X_DOT, IndexTensor, ) self.jvp_out_shape_map = {0: self.prim_output['Y']} # Set transpose check_dot = lambda v: v is X Y_BAR = paddle.static.data(name='Y_BAR', shape=[9, 3], dtype='float64') self.transpose_args = (check_dot, Y_BAR) self.transpose_out_shape_map = { 0: X, } self.all_ops = [ # prim op: 'gather_p', # jvp op: 'gather_p', # transpose op: 'scatter_add_p', 'fill_constant_p', ] class TestScatterAddPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'scatter_add_p' X = paddle.static.data(name='X', shape=[9, 5], dtype='float64') Y = paddle.static.data(name='Y', shape=[9, 3], dtype='float64') IndexTensor = paddle.static.data( name='IndexTensor', shape=[3], dtype='int32' ) self.prim_input = {'X': X, 'Y': Y, 'IndexTensor': IndexTensor} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {'axis': 1} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[9, 5], dtype='float64') Y_DOT = paddle.static.data(name='Y_DOT', shape=[9, 3], dtype='float64') self.jvp_args = (X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} # Set transpose check_dot = lambda v: v is X or v is Y Z_BAR = paddle.static.data(name='Z_BAR', shape=[9, 5], dtype='float64') self.transpose_args = (check_dot, Z_BAR) self.transpose_out_shape_map = {0: X, 1: Y} self.all_ops = [ # prim op: 'scatter_add_p', # jvp op: 'scatter_add_p', # transpose op: 'scatter_add_p', 'fill_constant_p', 'gather_p', ] class TestSelectPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'select_p' Cond = paddle.static.data(name='Condition', shape=[9, 5], dtype='bool') X = paddle.static.data(name='X', shape=[9, 5], dtype='float64') Y = paddle.static.data(name='Y', shape=[9, 5], dtype='float64') self.prim_input = {'Condition': Cond, 'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP Cond_DOT = paddle.static.data( name='Cond_DOT', shape=[9, 5], dtype='float64' ) X_DOT = paddle.static.data(name='X_DOT', shape=[9, 5], dtype='float64') Y_DOT = paddle.static.data(name='Y_DOT', shape=[9, 5], dtype='float64') self.jvp_args = (Cond_DOT, X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} # Set transpose check_dot = lambda v: True Z_BAR = paddle.static.data(name='Z_BAR', shape=[9, 5], dtype='float64') self.transpose_args = (check_dot, Z_BAR) self.transpose_out_shape_map = {0: X, 1: Y} self.all_ops = [ # prim op: 'select_p', # jvp op: 'select_p', # transpose op: 'fill_constant_p', 'fill_constant_p', 'fill_constant_p', 'select_p', 'select_p', ] class TestEqPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'eq_p' X = paddle.static.data(name='X', shape=[4, 5], dtype='float64') Y = paddle.static.data(name='Y', shape=[4, 5], dtype='float64') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[4, 5], dtype='float64') Y_DOT = paddle.static.data(name='Y_DOT', shape=[4, 5], dtype='float64') self.jvp_args = (X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} self.all_ops = [ # prim op: 'eq_p', # jvp op: 'fill_constant_p', # transpose op: ] class TestGtPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'gt_p' X = paddle.static.data(name='X', shape=[4, 5], dtype='float64') Y = paddle.static.data(name='Y', shape=[4, 5], dtype='float64') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[4, 5], dtype='float64') Y_DOT = paddle.static.data(name='Y_DOT', shape=[4, 5], dtype='float64') self.jvp_args = (X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} self.all_ops = [ # prim op: 'gt_p', # jvp op: 'fill_constant_p', # transpose op: ] class TestGePJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'ge_p' X = paddle.static.data(name='X', shape=[4, 5], dtype='float64') Y = paddle.static.data(name='Y', shape=[4, 5], dtype='float64') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[4, 5], dtype='float64') Y_DOT = paddle.static.data(name='Y_DOT', shape=[4, 5], dtype='float64') self.jvp_args = (X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} self.all_ops = [ # prim op: 'ge_p', # jvp op: 'fill_constant_p', # transpose op: ] class TestNePJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'ne_p' X = paddle.static.data(name='X', shape=[4, 5], dtype='float64') Y = paddle.static.data(name='Y', shape=[4, 5], dtype='float64') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[4, 5], dtype='float64') Y_DOT = paddle.static.data(name='Y_DOT', shape=[4, 5], dtype='float64') self.jvp_args = (X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} self.all_ops = [ # prim op: 'ne_p', # jvp op: 'fill_constant_p', # transpose op: ] class TestPowPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'pow_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='float32') Y = paddle.static.data(name='Y', shape=[5, 6], dtype='float32') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='float32') Y_DOT = paddle.static.data(name='Y_DOT', shape=[5, 6], dtype='float32') self.jvp_args = (X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} self.all_ops = [ # prim op: 'pow_p', # jvp op: 'fill_constant_p', 'fill_constant_p', 'eq_p', 'select_p', 'sub_p', 'mul_p', 'mul_p', 'pow_p', 'mul_p', 'mul_p', 'log_p', 'add_p' # transpose op: ] class TestMaxPJVPAndTranspose(TestAddPJVPAndTranspose): def init_data(self): # Set prim op self.op_type = 'max_p' X = paddle.static.data(name='X', shape=[5, 6], dtype='float32') Y = paddle.static.data(name='Y', shape=[5, 6], dtype='float32') self.prim_input = {'X': X, 'Y': Y} self.prim_output = { 'Z': self.layer_help.create_variable_for_type_inference( dtype=X.dtype ) } self.prim_attrs = {} # Set JVP X_DOT = paddle.static.data(name='X_DOT', shape=[5, 6], dtype='float32') Y_DOT = paddle.static.data(name='Y_DOT', shape=[5, 6], dtype='float32') self.jvp_args = (X_DOT, Y_DOT) self.jvp_out_shape_map = {0: self.prim_output['Z']} self.all_ops = [ # prim op: 'max_p', # jvp op: 'fill_constant_p', 'eq_p', 'select_p', # transpose op: ] if __name__ == '__main__': unittest.main()