# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is definition of dataset class, which is high performance IO.""" from paddle.fluid.proto import data_feed_pb2 from google.protobuf import text_format from . import core from ..utils import deprecated __all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset'] class DatasetFactory: """ DatasetFactory is a factory which create dataset by its name, you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset", the default is "QueueDataset". Example: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") """ def __init__(self): """Init.""" pass def create_dataset(self, datafeed_class="QueueDataset"): """ Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset", the default is "QueueDataset". Args: datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset. Default is QueueDataset. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset() """ try: dataset = globals()[datafeed_class]() return dataset except: raise ValueError( "datafeed class %s does not exist" % datafeed_class ) class DatasetBase: """Base dataset class.""" def __init__(self): """Init.""" # define class name here # to decide whether we need create in memory instance self.proto_desc = data_feed_pb2.DataFeedDesc() self.proto_desc.pipe_command = "cat" self.dataset = core.Dataset("MultiSlotDataset") self.thread_num = 1 self.filelist = [] self.use_ps_gpu = False self.psgpu = None def set_pipe_command(self, pipe_command): """ Set pipe command of current dataset A pipe command is a UNIX pipeline command that can be used only Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset() dataset.set_pipe_command("python my_script.py") Args: pipe_command(str): pipe command """ self.proto_desc.pipe_command = pipe_command def set_so_parser_name(self, so_parser_name): """ Set so parser name of current dataset Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset() dataset.set_so_parser_name("./abc.so") Args: pipe_command(str): pipe command """ self.proto_desc.so_parser_name = so_parser_name def set_rank_offset(self, rank_offset): """ Set rank_offset for merge_pv. It set the message of Pv. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset() dataset.set_rank_offset("rank_offset") Args: rank_offset(str): rank_offset's name """ self.proto_desc.rank_offset = rank_offset def set_fea_eval(self, record_candidate_size, fea_eval=True): """ set fea eval mode for slots shuffle to debug the importance level of slots(features), fea_eval need to be set True for slots shuffle. Args: record_candidate_size(int): size of instances candidate to shuffle one slot fea_eval(bool): whether enable fea eval mode to enable slots shuffle. default is True. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_fea_eval(1000000, True) """ if fea_eval: self.dataset.set_fea_eval(fea_eval, record_candidate_size) self.fea_eval = fea_eval def slots_shuffle(self, slots): """ Slots Shuffle Slots Shuffle is a shuffle method in slots level, which is usually used in sparse feature with large scale of instances. To compare the metric, i.e. auc while doing slots shuffle on one or several slots with baseline to evaluate the importance level of slots(features). Args: slots(list[string]): the set of slots(string) to do slots shuffle. Examples: import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_merge_by_lineid() #suppose there is a slot 0 dataset.slots_shuffle(['0']) """ if self.fea_eval: slots_set = set(slots) self.dataset.slots_shuffle(slots_set) def set_batch_size(self, batch_size): """ Set batch size. Will be effective during training Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset() dataset.set_batch_size(128) Args: batch_size(int): batch size """ self.proto_desc.batch_size = batch_size def set_pv_batch_size(self, pv_batch_size): """ Set pv batch size. It will be effective during enable_pv_merge Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset() dataset.set_pv_batch(128) Args: pv_batch_size(int): pv batch size """ self.proto_desc.pv_batch_size = pv_batch_size def set_thread(self, thread_num): """ Set thread num, it is the num of readers. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset() dataset.set_thread(12) Args: thread_num(int): thread num """ self.dataset.set_thread_num(thread_num) self.thread_num = thread_num def set_filelist(self, filelist): """ Set file list in current worker. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset() dataset.set_filelist(['a.txt', 'b.txt']) Args: filelist(list): file list """ self.dataset.set_filelist(filelist) self.filelist = filelist def set_input_type(self, input_type): self.proto_desc.input_type = input_type def set_use_var(self, var_list): """ Set Variables which you will use. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset() dataset.set_use_var([data, label]) Args: var_list(list): variable list """ multi_slot = self.proto_desc.multi_slot_desc for var in var_list: slot_var = multi_slot.slots.add() slot_var.is_used = True slot_var.name = var.name if var.lod_level == 0: slot_var.is_dense = True slot_var.shape.extend(var.shape) if var.dtype == core.VarDesc.VarType.FP32: slot_var.type = "float" elif var.dtype == core.VarDesc.VarType.INT64: slot_var.type = "uint64" elif var.dtype == core.VarDesc.VarType.INT32: slot_var.type = "uint32" else: raise ValueError( "Currently, fluid.dataset only supports dtype=float32, dtype=int32 and dtype=int64" ) def set_hdfs_config(self, fs_name, fs_ugi): """ Set hdfs config: fs name ad ugi Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset() dataset.set_hdfs_config("my_fs_name", "my_fs_ugi") Args: fs_name(str): fs name fs_ugi(str): fs ugi """ self.dataset.set_hdfs_config(fs_name, fs_ugi) def set_download_cmd(self, download_cmd): """ Set customized download cmd: download_cmd Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset() dataset.set_download_cmd("./read_from_afs") Args: download_cmd(str): customized download command """ self.dataset.set_download_cmd(download_cmd) def _prepare_to_run(self): """ Set data_feed_desc before load or shuffle, user no need to call this function. """ if self.thread_num > len(self.filelist): self.thread_num = len(self.filelist) self.dataset.set_thread_num(self.thread_num) self.dataset.set_data_feed_desc(self.desc()) self.dataset.create_readers() def _set_use_ps_gpu(self, psgpu): """ set use_ps_gpu flag Args: use_ps_gpu: bool """ self.use_ps_gpu = True # if not defined heterps with paddle, users will not use psgpu if not core._is_compiled_with_heterps(): self.use_ps_gpu = False elif self.use_ps_gpu: self.psgpu = psgpu def _finish_to_run(self): self.dataset.destroy_readers() def desc(self): """ Returns a protobuf message for this DataFeedDesc Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset() print(dataset.desc()) Returns: A string message """ return text_format.MessageToString(self.proto_desc) def _dynamic_adjust_before_train(self, thread_num): pass def _dynamic_adjust_after_train(self): pass class InMemoryDataset(DatasetBase): """ InMemoryDataset, it will load data into memory and shuffle data before training. This class should be created by DatasetFactory Example: dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset") """ @deprecated(since="2.0.0", update_to="paddle.distributed.InMemoryDataset") def __init__(self): """Init.""" super().__init__() self.proto_desc.name = "MultiSlotInMemoryDataFeed" self.fleet_send_batch_size = None self.is_user_set_queue_num = False self.queue_num = None self.parse_ins_id = False self.parse_content = False self.parse_logkey = False self.merge_by_sid = True self.enable_pv_merge = False self.merge_by_lineid = False self.fleet_send_sleep_seconds = None self.trainer_num = -1 self.pass_id = 0 @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset._set_feed_type", ) def set_feed_type(self, data_feed_type): """ Set data_feed_desc """ self.proto_desc.name = data_feed_type if self.proto_desc.name == "SlotRecordInMemoryDataFeed": self.dataset = core.Dataset("SlotRecordDataset") @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset._prepare_to_run", ) def _prepare_to_run(self): """ Set data_feed_desc before load or shuffle, user no need to call this function. """ if self.thread_num <= 0: self.thread_num = 1 self.dataset.set_thread_num(self.thread_num) if self.queue_num is None: self.queue_num = self.thread_num self.dataset.set_queue_num(self.queue_num) self.dataset.set_parse_ins_id(self.parse_ins_id) self.dataset.set_parse_content(self.parse_content) self.dataset.set_parse_logkey(self.parse_logkey) self.dataset.set_merge_by_sid(self.merge_by_sid) self.dataset.set_enable_pv_merge(self.enable_pv_merge) self.dataset.set_data_feed_desc(self.desc()) self.dataset.create_channel() self.dataset.create_readers() @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_before_train", ) def _dynamic_adjust_before_train(self, thread_num): if not self.is_user_set_queue_num: if self.use_ps_gpu: self.dataset.dynamic_adjust_channel_num(thread_num, True) else: self.dataset.dynamic_adjust_channel_num(thread_num, False) self.dataset.dynamic_adjust_readers_num(thread_num) @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_after_train", ) def _dynamic_adjust_after_train(self): if not self.is_user_set_queue_num: if self.use_ps_gpu: self.dataset.dynamic_adjust_channel_num(self.thread_num, True) else: self.dataset.dynamic_adjust_channel_num(self.thread_num, False) self.dataset.dynamic_adjust_readers_num(self.thread_num) @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset._set_queue_num", ) def set_queue_num(self, queue_num): """ Set Dataset output queue num, training threads get data from queues Args: queue_num(int): dataset output queue num Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_queue_num(12) """ self.is_user_set_queue_num = True self.queue_num = queue_num @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset._set_parse_ins_id", ) def set_parse_ins_id(self, parse_ins_id): """ Set id Dataset need to parse insid Args: parse_ins_id(bool): if parse ins_id or not Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_parse_ins_id(True) """ self.parse_ins_id = parse_ins_id @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset._set_parse_content", ) def set_parse_content(self, parse_content): """ Set if Dataset need to parse content Args: parse_content(bool): if parse content or not Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_parse_content(True) """ self.parse_content = parse_content def set_parse_logkey(self, parse_logkey): """ Set if Dataset need to parse logkey Args: parse_content(bool): if parse logkey or not Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_parse_logkey(True) """ self.parse_logkey = parse_logkey def _set_trainer_num(self, trainer_num): """ Set trainer num Args: trainer_num(int): trainer num Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset._set_trainer_num(1) """ self.trainer_num = trainer_num @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset._set_merge_by_sid", ) def set_merge_by_sid(self, merge_by_sid): """ Set if Dataset need to merge sid. If not, one ins means one Pv. Args: merge_by_sid(bool): if merge sid or not Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_merge_by_sid(True) """ self.merge_by_sid = merge_by_sid def set_enable_pv_merge(self, enable_pv_merge): """ Set if Dataset need to merge pv. Args: enable_pv_merge(bool): if enable_pv_merge or not Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_enable_pv_merge(True) """ self.enable_pv_merge = enable_pv_merge def preprocess_instance(self): """ Merge pv instance and convey it from input_channel to input_pv_channel. It will be effective when enable_pv_merge_ is True. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.preprocess_instance() """ self.dataset.preprocess_instance() def set_current_phase(self, current_phase): """ Set current phase in train. It is useful for untest. current_phase : 1 for join, 0 for update. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.set_current_phase(1) """ self.dataset.set_current_phase(current_phase) def postprocess_instance(self): """ Divide pv instance and convey it to input_channel. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.preprocess_instance() exe.train_from_dataset(dataset) dataset.postprocess_instance() """ self.dataset.postprocess_instance() @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset._set_fleet_send_batch_size", ) def set_fleet_send_batch_size(self, fleet_send_batch_size=1024): """ Set fleet send batch size, default is 1024 Args: fleet_send_batch_size(int): fleet send batch size Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_fleet_send_batch_size(800) """ self.fleet_send_batch_size = fleet_send_batch_size @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset._set_fleet_send_sleep_seconds", ) def set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0): """ Set fleet send sleep time, default is 0 Args: fleet_send_sleep_seconds(int): fleet send sleep time Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_fleet_send_sleep_seconds(2) """ self.fleet_send_sleep_seconds = fleet_send_sleep_seconds @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset._set_merge_by_lineid", ) def set_merge_by_lineid(self, merge_size=2): """ Set merge by line id, instances of same line id will be merged after shuffle, you should parse line id in data generator. Args: merge_size(int): ins size to merge. default is 2. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_merge_by_lineid() """ self.dataset.set_merge_by_lineid(merge_size) self.merge_by_lineid = True self.parse_ins_id = True @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset._set_generate_unique_feasigns", ) def set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num): self.dataset.set_generate_unique_feasigns(generate_uni_feasigns) self.gen_uni_feasigns = generate_uni_feasigns self.local_shard_num = shard_num @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset._generate_local_tables_unlock", ) def generate_local_tables_unlock( self, table_id, fea_dim, read_thread_num, consume_thread_num, shard_num ): self.dataset.generate_local_tables_unlock( table_id, fea_dim, read_thread_num, consume_thread_num, shard_num ) def set_date(self, date): """ :api_attr: Static Graph Set training date for pull sparse parameters, saving and loading model. Only used in psgpu Args: date(str): training date(format : YYMMDD). eg.20211111 Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_date("20211111") """ year = int(date[:4]) month = int(date[4:6]) day = int(date[6:]) if self.use_ps_gpu and core._is_compiled_with_heterps(): self.psgpu.set_date(year, month, day) @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset.load_into_memory", ) def load_into_memory(self, is_shuffle=False): """ Load data into memory Args: is_shuffle(bool): whether to use local shuffle, default is False Examples: .. code-block:: python # required: skiptest import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() """ self._prepare_to_run() if not self.use_ps_gpu: self.dataset.load_into_memory() elif core._is_compiled_with_heterps(): self.psgpu.set_dataset(self.dataset) self.psgpu.load_into_memory(is_shuffle) @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset.preload_into_memory", ) def preload_into_memory(self, thread_num=None): """ Load data into memory in async mode Args: thread_num(int): preload thread num Examples: .. code-block:: python # required: skiptest import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.preload_into_memory() dataset.wait_preload_done() """ self._prepare_to_run() if thread_num is None: thread_num = self.thread_num self.dataset.set_preload_thread_num(thread_num) self.dataset.create_preload_readers() self.dataset.preload_into_memory() @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset.wait_preload_done", ) def wait_preload_done(self): """ Wait preload_into_memory done Examples: .. code-block:: python # required: skiptest import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.preload_into_memory() dataset.wait_preload_done() """ self.dataset.wait_preload_done() self.dataset.destroy_preload_readers() @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset.local_shuffle", ) def local_shuffle(self): """ Local shuffle Examples: .. code-block:: python # required: skiptest import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.local_shuffle() """ self.dataset.local_shuffle() @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset.global_shuffle", ) def global_shuffle(self, fleet=None, thread_num=12): """ Global shuffle. Global shuffle can be used only in distributed mode. i.e. multiple processes on single machine or multiple machines training together. If you run in distributed mode, you should pass fleet instead of None. Examples: .. code-block:: python # required: skiptest import paddle.fluid as fluid from paddle.incubate.fleet.parameter_server.pslib import fleet dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.global_shuffle(fleet) Args: fleet(Fleet): fleet singleton. Default None. thread_num(int): shuffle thread num. Default is 12. """ if fleet is not None: if hasattr(fleet, "barrier_worker"): print("pscore fleet") fleet.barrier_worker() else: fleet._role_maker.barrier_worker() if self.trainer_num == -1: self.trainer_num = fleet.worker_num() if self.fleet_send_batch_size is None: self.fleet_send_batch_size = 1024 if self.fleet_send_sleep_seconds is None: self.fleet_send_sleep_seconds = 0 self.dataset.register_client2client_msg_handler() self.dataset.set_trainer_num(self.trainer_num) self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size) self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds) if fleet is not None: if hasattr(fleet, "barrier_worker"): fleet.barrier_worker() else: fleet._role_maker.barrier_worker() self.dataset.global_shuffle(thread_num) if fleet is not None: if hasattr(fleet, "barrier_worker"): fleet.barrier_worker() else: fleet._role_maker.barrier_worker() if self.merge_by_lineid: self.dataset.merge_by_lineid() if fleet is not None: if hasattr(fleet, "barrier_worker"): fleet.barrier_worker() else: fleet._role_maker.barrier_worker() @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset.release_memory", ) def release_memory(self): """ :api_attr: Static Graph Release InMemoryDataset memory data, when data will not be used again. Examples: .. code-block:: python # required: skiptest import paddle.fluid as fluid from paddle.incubate.fleet.parameter_server.pslib import fleet dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.global_shuffle(fleet) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) exe.train_from_dataset(fluid.default_main_program(), dataset) dataset.release_memory() """ self.dataset.release_memory() def get_pv_data_size(self): """ Get memory data size of Pv, user can call this function to know the pv num of ins in all workers after load into memory. Note: This function may cause bad performance, because it has barrier Returns: The size of memory pv data. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() print dataset.get_pv_data_size() """ return self.dataset.get_pv_data_size() def get_epoch_finish(self): return self.dataset.get_epoch_finish() @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset.get_memory_data_size", ) def get_memory_data_size(self, fleet=None): """ Get memory data size, user can call this function to know the num of ins in all workers after load into memory. Note: This function may cause bad performance, because it has barrier Args: fleet(Fleet): Fleet Object. Returns: The size of memory data. Examples: .. code-block:: python # required: skiptest import paddle.fluid as fluid from paddle.incubate.fleet.parameter_server.pslib import fleet dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() print dataset.get_memory_data_size(fleet) """ import numpy as np local_data_size = self.dataset.get_memory_data_size() local_data_size = np.array([local_data_size]) if fleet is not None: global_data_size = local_data_size * 0 fleet._role_maker.all_reduce_worker( local_data_size, global_data_size ) return global_data_size[0] return local_data_size[0] @deprecated( since="2.0.0", update_to="paddle.distributed.InMemoryDataset.get_shuffle_data_size", ) def get_shuffle_data_size(self, fleet=None): """ Get shuffle data size, user can call this function to know the num of ins in all workers after local/global shuffle. Note: This function may cause bad performance to local shuffle, because it has barrier. It does not affect global shuffle. Args: fleet(Fleet): Fleet Object. Returns: The size of shuffle data. Examples: .. code-block:: python # required: skiptest import paddle.fluid as fluid from paddle.incubate.fleet.parameter_server.pslib import fleet dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() dataset.global_shuffle(fleet) print dataset.get_shuffle_data_size(fleet) """ import numpy as np local_data_size = self.dataset.get_shuffle_data_size() local_data_size = np.array([local_data_size]) print('global shuffle local_data_size: ', local_data_size) if fleet is not None: global_data_size = local_data_size * 0 if hasattr(fleet, "util"): global_data_size = fleet.util.all_reduce(local_data_size) else: fleet._role_maker.all_reduce_worker( local_data_size, global_data_size ) return global_data_size[0] return local_data_size[0] def _set_heter_ps(self, enable_heter_ps=False): """ Set heter ps mode user no need to call this function. """ self.dataset.set_heter_ps(enable_heter_ps) def set_graph_config(self, config): """ Set graph config, user can set graph config in gpu graph mode. Args: config(dict): config dict. Returns: The size of shuffle data. Examples: .. code-block:: python # required: skiptest import paddle.fluid as fluid from paddle.incubate.fleet.parameter_server.pslib import fleet dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") graph_config = {"walk_len": 24, "walk_degree": 10, "once_sample_startid_len": 80000, "sample_times_one_chunk": 5, "window": 3, "debug_mode": 0, "batch_size": 800, "meta_path": "cuid2clk-clk2cuid;cuid2conv-conv2cuid;clk2cuid-cuid2clk;clk2cuid-cuid2conv", "gpu_graph_training": 1} dataset.set_graph_config(graph_config) """ self.proto_desc.graph_config.walk_degree = config.get("walk_degree", 1) self.proto_desc.graph_config.walk_len = config.get("walk_len", 20) self.proto_desc.graph_config.window = config.get("window", 5) self.proto_desc.graph_config.once_sample_startid_len = config.get( "once_sample_startid_len", 8000 ) self.proto_desc.graph_config.sample_times_one_chunk = config.get( "sample_times_one_chunk", 10 ) self.proto_desc.graph_config.batch_size = config.get("batch_size", 1) self.proto_desc.graph_config.debug_mode = config.get("debug_mode", 0) self.proto_desc.graph_config.first_node_type = config.get( "first_node_type", "" ) self.proto_desc.graph_config.meta_path = config.get("meta_path", "") self.proto_desc.graph_config.gpu_graph_training = config.get( "gpu_graph_training", True ) self.proto_desc.graph_config.sage_mode = config.get("sage_mode", False) self.proto_desc.graph_config.samples = config.get("samples", "") self.proto_desc.graph_config.train_table_cap = config.get( "train_table_cap", 800000 ) self.proto_desc.graph_config.infer_table_cap = config.get( "infer_table_cap", 800000 ) self.proto_desc.graph_config.excluded_train_pair = config.get( "excluded_train_pair", "" ) self.proto_desc.graph_config.infer_node_type = config.get( "infer_node_type", "" ) self.proto_desc.graph_config.get_degree = config.get( "get_degree", False ) self.dataset.set_gpu_graph_mode(True) def set_pass_id(self, pass_id): """ Set pass id, user can set pass id in gpu graph mode. Args: pass_id: pass id. Examples: .. code-block:: python import paddle.fluid as fluid pass_id = 0 dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_pass_id(pass_id) """ self.pass_id = pass_id self.dataset.set_pass_id(pass_id) def get_pass_id(self): """ Get pass id, user can set pass id in gpu graph mode. Returns: The pass id. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") pass_id = dataset.get_pass_id() """ return self.pass_id def dump_walk_path(self, path, dump_rate=1000): """ dump_walk_path """ self.dataset.dump_walk_path(path, dump_rate) class QueueDataset(DatasetBase): """ QueueDataset, it will process data streamly. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("QueueDataset") """ def __init__(self): """ Initialize QueueDataset This class should be created by DatasetFactory """ super().__init__() self.proto_desc.name = "MultiSlotDataFeed" @deprecated( since="2.0.0", update_to="paddle.distributed.QueueDataset._prepare_to_run", ) def _prepare_to_run(self): """ Set data_feed_desc/thread num/filelist before run, user no need to call this function. """ if self.thread_num > len(self.filelist): self.thread_num = len(self.filelist) if self.thread_num == 0: self.thread_num = 1 self.dataset.set_thread_num(self.thread_num) self.dataset.set_filelist(self.filelist) self.dataset.set_data_feed_desc(self.desc()) self.dataset.create_readers() def local_shuffle(self): """ Local shuffle data. Local shuffle is not supported in QueueDataset NotImplementedError will be raised Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("QueueDataset") dataset.local_shuffle() Raises: NotImplementedError: QueueDataset does not support local shuffle """ raise NotImplementedError( "QueueDataset does not support local shuffle, " "please use InMemoryDataset for local_shuffle" ) def global_shuffle(self, fleet=None): """ Global shuffle data. Global shuffle is not supported in QueueDataset NotImplementedError will be raised Args: fleet(Fleet): fleet singleton. Default None. Examples: .. code-block:: python import paddle.fluid as fluid from paddle.incubate.fleet.parameter_server.pslib import fleet dataset = fluid.DatasetFactory().create_dataset("QueueDataset") #dataset.global_shuffle(fleet) Raises: NotImplementedError: QueueDataset does not support global shuffle """ raise NotImplementedError( "QueueDataset does not support global shuffle, " "please use InMemoryDataset for global_shuffle" ) class FileInstantDataset(DatasetBase): """ FileInstantDataset, it will process data streamly. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset") """ def __init__(self): """ Initialize FileInstantDataset This class should be created by DatasetFactory """ super().__init__() self.proto_desc.name = "MultiSlotFileInstantDataFeed" def local_shuffle(self): """ Local shuffle FileInstantDataset does not support local shuffle """ raise NotImplementedError( "FileInstantDataset does not support local shuffle, " "please use InMemoryDataset for local_shuffle" ) def global_shuffle(self, fleet=None): """ Global shuffle FileInstantDataset does not support global shuffle """ raise NotImplementedError( "FileInstantDataset does not support global shuffle, " "please use InMemoryDataset for global_shuffle" ) class BoxPSDataset(InMemoryDataset): """ BoxPSDataset: derived from InMemoryDataset. Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset") """ def __init__(self): """ Initialize BoxPSDataset This class should be created by DatasetFactory """ super().__init__() self.boxps = core.BoxPS(self.dataset) self.proto_desc.name = "PaddleBoxDataFeed" def set_date(self, date): """ Workaround for date """ year = int(date[:4]) month = int(date[4:6]) day = int(date[6:]) self.boxps.set_date(year, month, day) def begin_pass(self): """ Begin Pass Notify BoxPS to load sparse parameters of next pass to GPU Memory Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset") dataset.begin_pass() """ self.boxps.begin_pass() def end_pass(self, need_save_delta): """ End Pass Notify BoxPS that current pass ended Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset") dataset.end_pass(True) """ self.boxps.end_pass(need_save_delta) def wait_preload_done(self): """ Wait async preload done Wait Until Feed Pass Done Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.preload_into_memory() dataset.wait_preload_done() """ self.boxps.wait_feed_pass_done() def load_into_memory(self): """ Load next pass into memory and notify boxps to fetch its emb from SSD Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.load_into_memory() """ self._prepare_to_run() self.boxps.load_into_memory() def preload_into_memory(self): """ Begin async preload next pass while current pass may be training Examples: .. code-block:: python import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset") filelist = ["a.txt", "b.txt"] dataset.set_filelist(filelist) dataset.preload_into_memory() """ self._prepare_to_run() self.boxps.preload_into_memory() def _dynamic_adjust_before_train(self, thread_num): if not self.is_user_set_queue_num: self.dataset.dynamic_adjust_channel_num(thread_num, True) self.dataset.dynamic_adjust_readers_num(thread_num) def _dynamic_adjust_after_train(self): pass def slots_shuffle(self, slots): """ Slots Shuffle Slots Shuffle is a shuffle method in slots level, which is usually used in sparse feature with large scale of instances. To compare the metric, i.e. auc while doing slots shuffle on one or several slots with baseline to evaluate the importance level of slots(features). Args: slots(list[string]): the set of slots(string) to do slots shuffle. Examples: import paddle.fluid as fluid dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset") dataset.set_merge_by_lineid() #suppose there is a slot 0 dataset.slots_shuffle(['0']) """ slots_set = set(slots) self.boxps.slots_shuffle(slots_set)