# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle from paddle import fluid from paddle.fluid import core from paddle.fluid.framework import IrGraph, Program, program_guard from paddle.fluid.tests.unittests.eager_op_test import OpTestTool from paddle.static.quantization import QuantizationTransformPass paddle.enable_static() class TestQuantizationSubGraph(unittest.TestCase): def build_graph_with_sub_graph(self): def linear_fc(num): data = paddle.static.data( name='image', shape=[-1, 1, 32, 32], dtype='float32' ) label = paddle.static.data( name='label', shape=[-1, 1], dtype='int64' ) hidden = data for _ in range(num): hidden = paddle.static.nn.fc( hidden, size=128, activation='relu' ) loss = paddle.nn.functional.cross_entropy( input=hidden, label=label, reduction='none', use_softmax=False ) loss = paddle.mean(loss) return loss main_program = Program() startup_program = Program() def true_func(): return linear_fc(3) def false_func(): return linear_fc(5) with program_guard(main_program, startup_program): x = paddle.tensor.fill_constant( shape=[1], dtype='float32', value=0.1 ) y = paddle.tensor.fill_constant( shape=[1], dtype='float32', value=0.23 ) pred = paddle.less_than(y, x) out = paddle.static.nn.cond(pred, true_func, false_func) core_graph = core.Graph(main_program.desc) # We should create graph for test, otherwise it will throw a # error that it cannot find the node of "STEP_COUNTER" graph = IrGraph(core_graph, for_test=True) sub_graph = graph.get_sub_graph(0) all_sub_graphs = graph.all_sub_graphs( for_test=True ) # same reason for subgraph # Should return graph and sub_graphs at the same time. If only return sub_graph, the graph will # be destructed and the sub_graphs will be empty. return graph, all_sub_graphs def test_quant_sub_graphs(self, use_cuda=False): graph, sub_graphs = self.build_graph_with_sub_graph() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() transform_pass = QuantizationTransformPass( scope=fluid.global_scope(), place=place, activation_quantize_type='abs_max', weight_quantize_type='range_abs_max', ) Find_inserted_quant_op = False for sub_graph in sub_graphs: transform_pass.apply(sub_graph) for op in sub_graph.all_op_nodes(): if 'quantize' in op.name(): Find_inserted_quant_op = True self.assertTrue(Find_inserted_quant_op) def test_quant_sub_graphs_cpu(self): self.test_quant_sub_graphs(use_cuda=False) @OpTestTool.skip_if( not paddle.is_compiled_with_cuda(), "Not GPU version paddle" ) def test_quant_sub_graphs_gpu(self): self.test_quant_sub_graphs(use_cuda=True) if __name__ == '__main__': unittest.main()