# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial import hypothesis.strategies as st import numpy as np from auto_scan_test import PassAutoScanTest from program_config import OpConfig, ProgramConfig, TensorConfig class TestConv2dXPUFusePass(PassAutoScanTest): def sample_predictor_configs(self, program_config): config = self.create_inference_config(use_xpu=True) yield config, ["conv2d_xpu"], (1e-3, 1e-3) def is_program_valid(self, prog_config): paddings = prog_config.ops[0].attrs["paddings"] strides = prog_config.ops[0].attrs["strides"] groups = prog_config.ops[0].attrs["groups"] padding_algorithm = prog_config.ops[0].attrs["padding_algorithm"] dilations = prog_config.ops[0].attrs["dilations"] data_format = prog_config.ops[0].attrs["data_format"] filter_shape = prog_config.weights["conv2d_weight"].shape input_shape = prog_config.inputs["conv2d_input"].shape if data_format != "NCHW": return False if padding_algorithm == "VALID": if ( (input_shape[2] - (dilations[0] * (filter_shape[2] - 1) + 1)) / strides[0] + 1 ) <= 1 or ( (input_shape[3] - (dilations[1] * (filter_shape[3] - 1) + 1)) / strides[1] + 1 ) <= 1: return False if padding_algorithm == "EXPLICIT": if ( ( input_shape[2] + paddings[0] + paddings[1] - (dilations[0] * (filter_shape[2] - 1) + 1) ) / strides[0] + 1 ) <= 1 or ( ( input_shape[3] + paddings[2] + paddings[3] - (dilations[1] * (filter_shape[3] - 1) + 1) ) / strides[1] + 1 ) <= 1: return False if data_format == "NCHW": if input_shape[1] != filter_shape[1] * groups: return False if filter_shape[0] % groups != 0: return False return True def sample_program_config(self, draw): data_format = draw(st.sampled_from(["NCHW"])) x_shape = draw( st.lists( st.integers(min_value=12, max_value=12), min_size=4, max_size=4 ) ) x_shape[1] = draw(st.integers(min_value=1, max_value=10)) # 3. Generate legal shape of input:Y of conv2d w_shape = draw( st.lists( st.integers(min_value=3, max_value=3), min_size=4, max_size=4 ) ) if data_format == "NCHW": w_shape[1] = x_shape[1] padding_algorithm = draw(st.sampled_from(["SAME", "VALID"])) groups = draw(st.integers(min_value=1, max_value=1)) dilations = draw( st.lists( st.integers(min_value=1, max_value=1), min_size=2, max_size=2 ) ) paddings = draw( st.lists( st.integers(min_value=1, max_value=1), min_size=2, max_size=2 ) ) strides = draw( st.lists( st.integers(min_value=1, max_value=1), min_size=2, max_size=2 ) ) axis = 1 ew_bias_shape = [w_shape[0]] # Random choose if add a relu operator has_relu = True def generate_data(shape): return np.random.random(shape).astype(np.float32) # Here we will compose a program # Still has some risks that the program is invalid or cause bug while running # Use function `is_program_valid` to filter the invalid programs before running # Use function `add_skip_pass_case` to ignore the programs even if they cause bug while runing conv2d_op = OpConfig( "conv2d", inputs={ "Input": ["conv2d_input"], "Filter": ["conv2d_weight"], }, outputs={"Output": ["conv2d_out"]}, data_format=data_format, dilations=dilations, padding_algorithm=padding_algorithm, groups=groups, paddings=paddings, strides=strides, has_bias=False, ) ew_bias_op = OpConfig( "elementwise_add", inputs={"X": ["conv2d_out"], "Y": ["ew_bias"]}, outputs={"Out": ["add_out"]}, axis=axis, ) ops = [conv2d_op, ew_bias_op] # 3. activation if has_relu: relu_op = OpConfig( "relu", inputs={"X": ["add_out"]}, outputs={"Out": ["relu_out"]} ) ops.append(relu_op) program_config = ProgramConfig( ops=ops, inputs={ "conv2d_input": TensorConfig( data_gen=partial(generate_data, x_shape) ), }, weights={ "conv2d_weight": TensorConfig( data_gen=partial(generate_data, w_shape) ), "ew_bias": TensorConfig( data_gen=partial(generate_data, ew_bias_shape) ), }, outputs=ops[-1].outputs["Out"], ) return program_config def test(self): self.run_and_statis( quant=False, max_examples=25, passes=["conv2d_xpu_fuse_pass"], ) if __name__ == "__main__": unittest.main()