# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle paddle.enable_static() from paddle import fluid from paddle.inference import Config, create_predictor class TRTTunedDynamicShapeTest(unittest.TestCase): def get_model(self): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): data = paddle.static.data( name="data", shape=[-1, 6, 64, 64], dtype="float32" ) conv_out = paddle.static.nn.conv2d( input=data, num_filters=3, filter_size=3, groups=1, padding=0, bias_attr=False, act=None, ) exe.run(startup_program) serialized_program = paddle.static.serialize_program( data, conv_out, program=main_program ) serialized_params = paddle.static.serialize_persistables( data, conv_out, executor=exe, program=main_program ) return serialized_program, serialized_params def get_config(self, model, params, tuned=False): config = Config() config.set_model_buffer(model, len(model), params, len(params)) config.enable_use_gpu(100, 0) config.set_optim_cache_dir('tuned_test') if tuned: config.collect_shape_range_info('shape_range.pbtxt') else: config.enable_tensorrt_engine( workspace_size=1024, max_batch_size=1, min_subgraph_size=0, precision_mode=paddle.inference.PrecisionType.Float32, use_static=True, use_calib_mode=False, ) config.enable_tuned_tensorrt_dynamic_shape( 'shape_range.pbtxt', True ) return config def predictor_run(self, config, in_data): predictor = create_predictor(config) in_names = predictor.get_input_names() in_handle = predictor.get_input_handle(in_names[0]) in_handle.copy_from_cpu(in_data) predictor.run() def test_tuned_dynamic_shape_run(self): program, params = self.get_model() config = self.get_config(program, params, tuned=True) self.predictor_run(config, np.ones((1, 6, 64, 64)).astype(np.float32)) config2 = self.get_config(program, params, tuned=False) self.predictor_run(config2, np.ones((1, 6, 32, 32)).astype(np.float32)) if __name__ == '__main__': unittest.main()