# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from inference_pass_test import InferencePassTest import paddle from paddle import fluid from paddle.fluid import core from paddle.fluid.core import AnalysisConfig, PassVersionChecker class TRTTileTest(InferencePassTest): def setUp(self): with fluid.program_guard(self.main_program, self.startup_program): data = paddle.static.data( name="data", shape=[4, 3, 224, 256], dtype="float32" ) tile_out = paddle.tile(x=data, repeat_times=[1, 1, 1, 1]) out = paddle.static.nn.batch_norm(tile_out, is_test=True) self.feeds = { "data": np.random.random([4, 3, 224, 256]).astype("float32"), } self.enable_trt = True self.trt_parameters = TRTTileTest.TensorRTParam( 1 << 30, 16, 1, AnalysisConfig.Precision.Float32, False, False ) self.fetch_list = [out] def test_check_output(self): if core.is_compiled_with_cuda(): use_gpu = True self.check_output_with_option(use_gpu, flatten=True) self.assertTrue( PassVersionChecker.IsCompatible('tensorrt_subgraph_pass') ) class TRTTileExpandTest(InferencePassTest): def setUp(self): with fluid.program_guard(self.main_program, self.startup_program): data = paddle.static.data( name="data", shape=[1, 1, 1, 1], dtype="float32" ) tile_out = paddle.tile(x=data, repeat_times=[1, 4, 1080, 1920]) out = paddle.static.nn.batch_norm(tile_out, is_test=True) self.feeds = { "data": np.random.random([1, 1, 1, 1]).astype("float32"), } self.enable_trt = True self.trt_parameters = TRTTileExpandTest.TensorRTParam( 1 << 30, 1, 1, AnalysisConfig.Precision.Float32, False, False ) self.fetch_list = [out] def test_check_output(self): if core.is_compiled_with_cuda(): use_gpu = True self.check_output_with_option(use_gpu, flatten=True) self.assertTrue( PassVersionChecker.IsCompatible('tensorrt_subgraph_pass') ) class TRTTileExpandStaticTest(InferencePassTest): def setUp(self): with fluid.program_guard(self.main_program, self.startup_program): data = paddle.static.data( name="data", shape=[1, 1, 1, 1], dtype="float32" ) tile_out = paddle.tile(x=data, repeat_times=[1, 4, 1080, 1920]) out = paddle.static.nn.batch_norm(tile_out, is_test=True) self.feeds = { "data": np.random.random([1, 1, 1, 1]).astype("float32"), } self.enable_trt = True self.trt_parameters = TRTTileExpandStaticTest.TensorRTParam( 1 << 30, 1, 1, AnalysisConfig.Precision.Float32, True, False ) self.fetch_list = [out] def test_check_output(self): if core.is_compiled_with_cuda(): use_gpu = True self.check_output_with_option(use_gpu, flatten=True) self.assertTrue( PassVersionChecker.IsCompatible('tensorrt_subgraph_pass') ) class TRTTileExpandHalfTest(InferencePassTest): def setUp(self): with fluid.program_guard(self.main_program, self.startup_program): data = paddle.static.data( name="data", shape=[1, 1, 1, 1], dtype="float32" ) tile_out = paddle.tile(x=data, repeat_times=[1, 4, 1080, 1920]) out = paddle.static.nn.batch_norm(tile_out, is_test=True) self.feeds = { "data": np.random.random([1, 1, 1, 1]).astype("float32"), } self.enable_trt = True self.trt_parameters = TRTTileExpandHalfTest.TensorRTParam( 1 << 30, 1, 1, AnalysisConfig.Precision.Half, False, False ) self.fetch_list = [out] def test_check_output(self): if core.is_compiled_with_cuda(): use_gpu = True self.check_output_with_option(use_gpu, 1e-4, flatten=True) self.assertTrue( PassVersionChecker.IsCompatible('tensorrt_subgraph_pass') ) if __name__ == "__main__": unittest.main()