# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from inference_pass_test import InferencePassTest import paddle from paddle import fluid from paddle.fluid import core from paddle.fluid.core import AnalysisConfig from paddle.static import nn # normal starts && ends class SlicePluginTRTTest(InferencePassTest): def setUpSliceParams(self): self.params_axes = [1, 3] self.params_starts = [0, 1] self.params_ends = [2, 3] def setUpTensorRTParams(self): self.trt_parameters = SlicePluginTRTTest.TensorRTParam( 1 << 30, 32, 1, AnalysisConfig.Precision.Float32, False, False ) self.enable_trt = True def setUp(self): self.setUpSliceParams() self.setUpTensorRTParams() with fluid.program_guard(self.main_program, self.startup_program): data = paddle.static.data( name="data", shape=[3, 3, 3, 3], dtype="float32" ) axes = self.params_axes starts = self.params_starts ends = self.params_ends slice_out = paddle.slice(data, axes=axes, starts=starts, ends=ends) out = nn.batch_norm(slice_out, is_test=True) self.feeds = { "data": np.random.random((3, 3, 3, 3)).astype("float32"), } self.fetch_list = [out] def test_check_output(self): use_gpu = [False] if core.is_compiled_with_cuda(): use_gpu.append(True) for i in range(len(use_gpu)): atol = 1e-5 if self.trt_parameters.precision == AnalysisConfig.Precision.Half: atol = 1e-3 self.check_output_with_option(use_gpu[i], atol) # negative starts && ends class SlicePluginTRTTestNegativeStartsAndEnds(SlicePluginTRTTest): def setUpSliceParams(self): self.params_axes = [2, 3] self.params_starts = [-3, -2] self.params_ends = [-1, 3] # exceeded bound starts && ends class SlicePluginTRTTestStartsAndEndsBoundCheck(SlicePluginTRTTest): def setUpSliceParams(self): self.params_axes = [2, 3] self.params_starts = [-5, -2] self.params_ends = [-1, 8] # fp16 class SlicePluginTRTTestFp16(SlicePluginTRTTest): def setUpTensorRTParams(self): self.trt_parameters = SlicePluginTRTTest.TensorRTParam( 1 << 30, 32, 1, AnalysisConfig.Precision.Half, False, False ) self.enable_trt = True class StaticSlicePluginTRTTestFp16(SlicePluginTRTTest): def setUpTensorRTParams(self): self.trt_parameters = SlicePluginTRTTest.TensorRTParam( 1 << 30, 32, 1, AnalysisConfig.Precision.Half, True, False ) self.enable_trt = True class StaticSlicePluginTRTTestFp32(SlicePluginTRTTest): def setUpTensorRTParams(self): self.trt_parameters = SlicePluginTRTTest.TensorRTParam( 1 << 30, 32, 1, AnalysisConfig.Precision.Float32, True, False ) self.enable_trt = True class SlicePluginTRTTestInt32(SlicePluginTRTTest): def setUp(self): self.setUpSliceParams() self.setUpTensorRTParams() with fluid.program_guard(self.main_program, self.startup_program): data = paddle.static.data( name="data", shape=[3, 3, 3, 3], dtype="int32" ) axes = self.params_axes starts = self.params_starts ends = self.params_ends slice_out = paddle.slice(data, axes=axes, starts=starts, ends=ends) cast_out = paddle.cast(slice_out, 'float32') out = nn.batch_norm(cast_out, is_test=True) self.feeds = { "data": np.random.random((3, 3, 3, 3)).astype("int32"), } self.fetch_list = [out] class StaticSlicePluginTRTTestInt32(SlicePluginTRTTest): def setUpTensorRTParams(self): self.trt_parameters = SlicePluginTRTTest.TensorRTParam( 1 << 30, 32, 1, AnalysisConfig.Precision.Float32, True, False ) self.enable_trt = True def setUp(self): self.setUpSliceParams() self.setUpTensorRTParams() with fluid.program_guard(self.main_program, self.startup_program): data = paddle.static.data( name="data", shape=[3, 3, 3, 3], dtype="int32" ) axes = self.params_axes starts = self.params_starts ends = self.params_ends slice_out = paddle.slice(data, axes=axes, starts=starts, ends=ends) cast_out = paddle.cast(slice_out, 'float32') out = nn.batch_norm(cast_out, is_test=True) self.feeds = { "data": np.random.random((3, 3, 3, 3)).astype("int32"), } self.fetch_list = [out] if __name__ == "__main__": unittest.main()