# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from inference_pass_test import InferencePassTest import paddle from paddle import fluid from paddle.fluid import core from paddle.fluid.core import AnalysisConfig, PassVersionChecker from paddle.static import nn class TensorRTMatMulDims2Test(InferencePassTest): def setUp(self): self.set_params() with fluid.program_guard(self.main_program, self.startup_program): data = paddle.static.data( name="data", shape=[24, 24], dtype="float32" ) matmul_out = paddle.matmul( x=data, y=data, transpose_x=self.transpose_x, transpose_y=self.transpose_y, ) matmul_out = paddle.scale(matmul_out, scale=self.alpha) out = nn.batch_norm(matmul_out, is_test=True) self.feeds = { "data": np.ones([24, 24]).astype("float32"), } self.enable_trt = True self.trt_parameters = TensorRTMatMulDims2Test.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Float32, False, False ) self.fetch_list = [out] def set_params(self): self.transpose_x = True self.transpose_y = True self.alpha = 2.0 def test_check_output(self): if core.is_compiled_with_cuda(): use_gpu = True self.check_output_with_option(use_gpu) self.assertTrue( PassVersionChecker.IsCompatible('tensorrt_subgraph_pass') ) class TensorRTMatMulTest(InferencePassTest): def setUp(self): self.set_params() with fluid.program_guard(self.main_program, self.startup_program): data = paddle.static.data( name="data", shape=[-1, 6, 24, 24], dtype="float32" ) matmul_out = paddle.matmul( x=data, y=data, transpose_x=self.transpose_x, transpose_y=self.transpose_y, ) matmul_out = paddle.scale(matmul_out, scale=self.alpha) out = nn.batch_norm(matmul_out, is_test=True) self.feeds = { "data": np.ones([1, 6, 24, 24]).astype("float32"), } self.enable_trt = True self.trt_parameters = TensorRTMatMulTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Float32, False, False ) self.fetch_list = [out] def set_params(self): self.transpose_x = False self.transpose_y = False self.alpha = 1.0 def test_check_output(self): if core.is_compiled_with_cuda(): use_gpu = True self.check_output_with_option(use_gpu) self.assertTrue( PassVersionChecker.IsCompatible('tensorrt_subgraph_pass') ) class TensorRTMatMulTransposeXTest(TensorRTMatMulTest): def set_params(self): self.transpose_x = True self.transpose_y = False self.alpha = 1.0 class TensorRTMatMulTransposeYTest(TensorRTMatMulTest): def set_params(self): self.transpose_x = False self.transpose_y = True self.alpha = 1.0 class TensorRTMatMulScaleTest(TensorRTMatMulTest): def set_params(self): self.transpose_x = False self.transpose_y = False self.alpha = 2.0 class TensorRTMatMulBroadcastTest(InferencePassTest): def setUp(self): self.set_params() place = fluid.CPUPlace() with fluid.program_guard(self.main_program, self.startup_program): data_x = paddle.static.data( name="data_x", shape=[-1, 6, 24], dtype="float32" ) data_y = paddle.static.data( name="data_y", shape=[24, 16], dtype="float32" ) matmul_out = paddle.matmul( x=data_x, y=data_y, transpose_x=self.transpose_x, transpose_y=self.transpose_y, ) matmul_out = paddle.scale(matmul_out, scale=self.alpha) out = nn.batch_norm(matmul_out, is_test=True) self.feeds = { "data_x": np.ones([2, 6, 24]).astype("float32"), "data_y": np.ones([24, 16]).astype("float32"), } self.enable_trt = True self.trt_parameters = TensorRTMatMulBroadcastTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Float32, False, False ) self.fetch_list = [out] def set_params(self): self.transpose_x = False self.transpose_y = False self.alpha = 1.0 def test_check_output(self): if core.is_compiled_with_cuda(): use_gpu = True self.check_output_with_option(use_gpu) self.assertTrue( PassVersionChecker.IsCompatible('tensorrt_subgraph_pass') ) if __name__ == "__main__": unittest.main()