# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertTakeAlongAxisTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: inputs = program_config.inputs attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] if len(inputs['input_data'].shape) <= attrs[0]['Axis']: return False if len(inputs['input_data'].shape) != len(inputs['index_data'].shape): return False return True def sample_program_configs(self): def generate_input1(shape): return np.random.random(shape).astype(np.float32) def generate_input2(index): return np.zeros(index).astype(np.int32) def generate_input3(axis): return np.array([axis]).astype(np.int32) for shape in [[32], [3, 64], [1, 64, 16], [1, 64, 16, 32]]: for index in [[1], [1, 1], [1, 1, 2], [1, 1, 1, 1]]: for axis in [0, 1, 2, 3]: self.shape = shape self.axis = axis dics = [{"Axis": axis}] ops_config = [ { "op_type": "take_along_axis", "op_inputs": { "Input": ["input_data"], "Index": ["index_data"], }, "op_outputs": {"Result": ["output_data"]}, "op_attrs": dics[0], } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input1, shape) ), "index_data": TensorConfig( data_gen=partial(generate_input2, index) ), }, outputs=["output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): if len(self.shape) == 1: self.dynamic_shape.min_input_shape = { "input_data": [4], "index_data": [1], } self.dynamic_shape.max_input_shape = { "input_data": [128], "index_data": [4], } self.dynamic_shape.opt_input_shape = { "input_data": [16], "index_data": [2], } elif len(self.shape) == 2: self.dynamic_shape.min_input_shape = { "input_data": [3, 64], "index_data": [1, 1], } self.dynamic_shape.max_input_shape = { "input_data": [3, 64], "index_data": [1, 1], } self.dynamic_shape.opt_input_shape = { "input_data": [3, 64], "index_data": [1, 1], } elif len(self.shape) == 3: self.dynamic_shape.min_input_shape = { "input_data": [1, 64, 16], "index_data": [1, 1, 2], } self.dynamic_shape.max_input_shape = { "input_data": [1, 64, 16], "index_data": [1, 1, 2], } self.dynamic_shape.opt_input_shape = { "input_data": [1, 64, 16], "index_data": [1, 1, 2], } elif len(self.shape) == 4: self.dynamic_shape.min_input_shape = { "input_data": [1, 64, 16, 32], "index_data": [1, 1, 1, 1], } self.dynamic_shape.max_input_shape = { "input_data": [1, 64, 16, 32], "index_data": [1, 1, 1, 1], } self.dynamic_shape.opt_input_shape = { "input_data": [1, 64, 16, 32], "index_data": [1, 1, 1, 1], } def clear_dynamic_shape(): self.dynamic_shape.max_input_shape = {} self.dynamic_shape.min_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(dynamic_shape): ver = paddle_infer.get_trt_compile_version() if ( ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 > 8200 and dynamic_shape ): return 1, 3 else: return 0, 4 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( False ), 1e-5 # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num(True), 1e-3 def add_skip_trt_case(self): pass def test(self): self.add_skip_trt_case() self.run_test() if __name__ == "__main__": unittest.main()