# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertSetValue(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input1(): return np.random.random([1, 6, 20, 50, 10, 3]).astype(np.float32) def generate_input2(): return np.random.random([1, 6, 20, 50, 10, 1]).astype(np.float32) ops_config = [ { "op_type": "set_value", "op_inputs": { "Input": ["input_data"], "ValueTensor": ["update_data"], }, "op_outputs": {"Out": ["set_output_data"]}, "op_attrs": { "axes": [5], "starts": [0], "ends": [1], "steps": [1], }, }, { "op_type": "gelu", "op_inputs": { "X": ["set_output_data"], }, "op_outputs": {"Out": ["set_tmp_output_data"]}, "op_attrs": {"approximate": True}, }, { "op_type": "slice", "op_inputs": {"Input": ["set_tmp_output_data"]}, "op_outputs": {"Out": ["slice3_output_data"]}, "op_attrs": { "decrease_axis": [], "axes": [5], "starts": [1], "ends": [2], }, }, { "op_type": "scale", "op_inputs": {"X": ["slice3_output_data"]}, "op_outputs": {"Out": ["scale5_output_data"]}, "op_attrs": { "scale": 62.1, "bias": 1, "bias_after_scale": True, }, }, { "op_type": "scale", "op_inputs": {"X": ["scale5_output_data"]}, "op_outputs": {"Out": ["scale6_output_data"]}, "op_attrs": { "scale": 0.1, "bias": 0, "bias_after_scale": True, }, }, { "op_type": "set_value", "op_inputs": { "Input": ["set_tmp_output_data"], "ValueTensor": ["scale6_output_data"], }, "op_outputs": {"Out": ["output_data"]}, "op_attrs": { "axes": [5], "starts": [1], "ends": [2], "steps": [1], }, }, ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig(data_gen=partial(generate_input1)), "update_data": TensorConfig(data_gen=partial(generate_input2)), }, outputs=["output_data"], ) yield program_config def sample_predictor_configs(self, program_config): def generate_dynamic_shape(attrs): self.dynamic_shape.min_input_shape = { "input_data": [1, 6, 20, 50, 10, 3], "update_data": [1, 6, 20, 50, 10, 1], "output_data": [1, 6, 20, 50, 10, 3], "set_output_data": [1, 6, 20, 50, 10, 3], } self.dynamic_shape.max_input_shape = { "input_data": [1, 6, 20, 50, 10, 3], "update_data": [1, 6, 20, 50, 10, 1], "output_data": [1, 6, 20, 50, 10, 3], "set_output_data": [1, 6, 20, 50, 10, 3], } self.dynamic_shape.opt_input_shape = { "input_data": [1, 6, 20, 50, 10, 3], "update_data": [1, 6, 20, 50, 10, 1], "output_data": [1, 6, 20, 50, 10, 3], "set_output_data": [1, 6, 20, 50, 10, 3], } def clear_dynamic_shape(): self.dynamic_shape.max_input_shape = {} self.dynamic_shape.min_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): if dynamic_shape: ver = paddle_infer.get_trt_compile_version() if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 8200: return 1, 5 return 1, 3 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 self.trt_param.workspace_size = 2013265920 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-5, 1e-4) self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-3, 1e-3) def test(self): self.run_test()