# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import Any, Dict, List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import SkipReasons, TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertRoiAlignTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input1(attrs: List[Dict[str, Any]], batch): return np.ones([batch, 256, 32, 32]).astype(np.float32) def generate_input2(attrs: List[Dict[str, Any]], batch): return np.random.random([3, 4]).astype(np.float32) def generate_input3(attrs: List[Dict[str, Any]], batch): if batch == 1: return np.array([3]).astype(np.int32) if batch == 2: return np.array([1, 2]).astype(np.int32) if batch == 4: return np.array([1, 1, 0, 1]).astype(np.int32) def generate_lod(batch): if batch == 1: return [[0, 3]] if batch == 2: return [[0, 1, 3]] if batch == 4: return [[0, 1, 2, 2, 3]] for num_input in [0, 1]: for batch in [1, 2, 4]: for spatial_scale in [0.5, 0.6]: for pooled_height in [7, 1]: for pooled_width in [7, 1]: for sampling_ratio in [-1, 4, 8]: for aligned in [True, False]: self.num_input = num_input if num_input == 1: batch = 1 dics = [ { "spatial_scale": spatial_scale, "pooled_height": pooled_height, "pooled_width": pooled_width, "sampling_ratio": sampling_ratio, "aligned": aligned, }, {}, ] dics_input = [ { "X": ["roi_align_input"], "ROIs": ["ROIs"], "RoisNum": ["RoisNum"], }, { "X": ["roi_align_input"], "ROIs": ["ROIs"], }, ] program_input = [ { "roi_align_input": TensorConfig( data_gen=partial( generate_input1, dics, batch ) ), "ROIs": TensorConfig( data_gen=partial( generate_input2, dics, batch ) ), "RoisNum": TensorConfig( data_gen=partial( generate_input3, dics, batch ) ), }, { "roi_align_input": TensorConfig( data_gen=partial( generate_input1, dics, batch ) ), "ROIs": TensorConfig( data_gen=partial( generate_input2, dics, batch ), lod=generate_lod(batch), ), }, ] ops_config = [ { "op_type": "roi_align", "op_inputs": dics_input[num_input], "op_outputs": { "Out": ["roi_align_out"] }, "op_attrs": dics[0], } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs=program_input[num_input], outputs=["roi_align_out"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): if self.num_input == 0: self.dynamic_shape.min_input_shape = { "roi_align_input": [1, 256, 32, 32], "ROIs": [3, 4], "RoisNum": [1], } self.dynamic_shape.max_input_shape = { "roi_align_input": [1, 256, 64, 64], "ROIs": [3, 4], "RoisNum": [1], } self.dynamic_shape.opt_input_shape = { "roi_align_input": [1, 256, 64, 64], "ROIs": [3, 4], "RoisNum": [1], } elif self.num_input == 1: self.dynamic_shape.min_input_shape = { "roi_align_input": [1, 256, 32, 32], "ROIs": [3, 4], } self.dynamic_shape.max_input_shape = { "roi_align_input": [1, 256, 64, 64], "ROIs": [3, 4], } self.dynamic_shape.opt_input_shape = { "roi_align_input": [1, 256, 64, 64], "ROIs": [3, 4], } def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): if self.num_input == 0: if dynamic_shape: return 0, 5 elif self.num_input == 1: if dynamic_shape: return 1, 3 else: return 0, 4 return 0, 4 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-3 # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-3 def add_skip_trt_case(self): def teller1(program_config, predictor_config): if len(program_config.inputs) == 3: return True return False self.add_skip_case( teller1, SkipReasons.TRT_NOT_SUPPORT, "INPUT RoisNum NOT SUPPORT" ) def test(self): self.add_skip_trt_case() self.run_test() if __name__ == "__main__": unittest.main()