# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import Any, Dict, List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertSkipLayernormTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: inputs = program_config.inputs weights = program_config.weights outputs = program_config.outputs attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # The input dimension should be less than or equal to the set axis. if 'begin_norm_axis' in attrs[0] and attrs[0]['begin_norm_axis'] >= 0: if len(inputs['inputX_data'].shape) <= attrs[0]['begin_norm_axis']: return False return True def sample_program_configs(self): def generate_input1(attrs: List[Dict[str, Any]], batch): return np.ones([batch, 128, 768]).astype(np.float32) def generate_input2(attrs: List[Dict[str, Any]], batch): return np.ones([batch, 128, 768]).astype(np.float32) def generate_weight1(attrs: List[Dict[str, Any]]): return np.random.random([768]).astype(np.float32) def generate_weight2(attrs: List[Dict[str, Any]]): return np.random.random([768]).astype(np.float32) for batch in [4]: for epsilon in [1e-5]: for begin_norm_axis in [2]: for enable_int8 in [False, True]: dics = [ { "epsilon": epsilon, "begin_norm_axis": begin_norm_axis, }, {}, ] ops_config = [ { "op_type": "elementwise_add", "op_inputs": { "X": ["inputX_data"], "Y": ["EleBias"], }, "op_outputs": {"Out": ["bias_out"]}, "op_attrs": {"axis": -1}, }, { "op_type": "elementwise_add", "op_inputs": { "X": ["bias_out"], "Y": ["inputY_data"], }, "op_outputs": {"Out": ["ele_out"]}, "op_attrs": {"axis": -1}, }, { "op_type": "layer_norm", "op_inputs": { "X": ["ele_out"], "Bias": ["Bias"], "Scale": ["Scale"], }, "op_outputs": { "Y": ["layernorm_out"], "Mean": ["Mean"], "Variance": ["Variance"], }, "op_attrs": dics[0], }, ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={ "Bias": TensorConfig( data_gen=partial(generate_weight1, dics) ), "Scale": TensorConfig( data_gen=partial(generate_weight2, dics) ), "EleBias": TensorConfig( data_gen=partial(generate_weight2, dics) ), }, inputs={ "inputX_data": TensorConfig( data_gen=partial( generate_input1, dics, batch ) ), "inputY_data": TensorConfig( data_gen=partial( generate_input2, dics, batch ) ), }, outputs=["ele_out", "layernorm_out"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): self.dynamic_shape.min_input_shape = { "inputX_data": [4, 128, 768], "inputY_data": [4, 128, 768], "Bias": [768], "Scale": [768], } self.dynamic_shape.max_input_shape = { "inputX_data": [4, 128, 768], "inputY_data": [4, 128, 768], "Bias": [768], "Scale": [768], } self.dynamic_shape.opt_input_shape = { "inputX_data": [4, 128, 768], "inputY_data": [4, 128, 768], "Bias": [768], "Scale": [768], } def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): if dynamic_shape: return 1, 4 else: return 0, 5 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape, fall back to fluid fused op clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-2 # atol=1e-2 while rtol is 1e-8 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-2 # atol=1e-2 while rtol is 1e-8 # just support dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-2 # atol=1e-2 while rtol is 1e-8 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-2 # atol=1e-2 while rtol is 1e-8 def add_skip_trt_case(self): pass def test(self): self.add_skip_trt_case() self.run_test() if __name__ == "__main__": unittest.main()