# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertLeakyReluTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input1(shape): return np.random.random(shape).astype(np.float32) for batch in [1, 2]: for shape in [[batch, 64], [batch, 32, 64], [batch, 8, 32, 32]]: self.input_dim = len(shape) for alpha in [0.02, 1.0, 100.0, -1.0, 0.0]: dics = [{"alpha": alpha}] ops_config = [ { "op_type": "leaky_relu", "op_inputs": { "X": ["input_data"], }, "op_outputs": { "Out": ["y_data"], }, "op_attrs": dics[0], } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input1, shape) ) }, outputs=["y_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): if self.input_dim == 2: self.dynamic_shape.min_input_shape = {"input_data": [1, 8]} self.dynamic_shape.max_input_shape = {"input_data": [64, 128]} self.dynamic_shape.opt_input_shape = {"input_data": [2, 16]} elif self.input_dim == 3: self.dynamic_shape.min_input_shape = {"input_data": [1, 8, 8]} self.dynamic_shape.max_input_shape = { "input_data": [64, 128, 256] } self.dynamic_shape.opt_input_shape = {"input_data": [2, 16, 64]} elif self.input_dim == 4: self.dynamic_shape.min_input_shape = { "input_data": [1, 8, 8, 4] } self.dynamic_shape.max_input_shape = { "input_data": [64, 64, 128, 128] } self.dynamic_shape.opt_input_shape = { "input_data": [2, 16, 64, 32] } def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): return 1, 2 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), (1e-3, 1e-3) self.trt_param.precision = paddle_infer.PrecisionType.Int8 yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), (1e-3, 1e-3) # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-3, 1e-3) self.trt_param.precision = paddle_infer.PrecisionType.Int8 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-3, 1e-3) def test(self): self.run_test() if __name__ == "__main__": unittest.main()