# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertGridSampler(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: self.trt_param.workspace_size = 1073741824 return True def sample_program_configs(self): def generate_input1(): if self.dims == 4: self.input_shape = [1, 3, 32, 32] return np.random.random([1, 3, 32, 32]).astype(np.float32) elif self.dims == 5: self.input_shape = [1, 3, 32, 32, 64] return np.random.random([1, 3, 32, 32, 64]).astype(np.float32) def generate_input2(): if self.dims == 4: self.input_shape = [1, 3, 3, 2] return np.random.random([1, 3, 3, 2]).astype(np.float32) elif self.dims == 5: self.input_shape = [1, 3, 3, 2, 3] return np.random.random([1, 3, 3, 2, 3]).astype(np.float32) mode = ["bilinear", "nearest"] padding_mode = ["zeros", "reflection", "border"] align_corners = [True, False] descs = [] for m in mode: for p in padding_mode: for a in align_corners: descs.append( { "mode": m, "padding_mode": p, "align_corners": a, } ) for dims in [4, 5]: for desc in descs: self.dims = dims ops_config = [ { "op_type": "grid_sampler", "op_inputs": { "X": ["input_data"], "Grid": ["grid_data"], }, "op_outputs": {"Output": ["output_data"]}, "op_attrs": desc, } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input1) ), "grid_data": TensorConfig( data_gen=partial(generate_input2) ), }, outputs=["output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(): if self.dims == 4: self.dynamic_shape.min_input_shape = { "input_data": [1, 3, 32, 32], "grid_data": [1, 3, 3, 2], } self.dynamic_shape.max_input_shape = { "input_data": [1, 3, 64, 64], "grid_data": [1, 3, 6, 2], } self.dynamic_shape.opt_input_shape = { "input_data": [1, 3, 32, 32], "grid_data": [1, 3, 3, 2], } elif self.dims == 5: self.dynamic_shape.min_input_shape = { "input_data": [1, 3, 32, 32, 64], "grid_data": [1, 3, 3, 2, 3], } self.dynamic_shape.max_input_shape = { "input_data": [1, 3, 64, 64, 128], "grid_data": [1, 3, 3, 6, 3], } self.dynamic_shape.opt_input_shape = { "input_data": [1, 3, 32, 32, 64], "grid_data": [1, 3, 3, 2, 3], } def clear_dynamic_shape(): self.dynamic_shape.max_input_shape = {} self.dynamic_shape.min_input_shape = {} self.dynamic_shape.opt_input_shape = {} attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() # for dynamic_shape generate_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), (1, 3), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), (1, 3), 1e-3 def test(self): self.run_test() if __name__ == "__main__": unittest.main()