# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import Any, Dict, List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertFillConstantTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_value_data(attrs: List[Dict[str, Any]]): return np.array([1]).astype(np.int32) def generate_shape_data(attrs: List[Dict[str, Any]]): return np.array([4, 23]).astype(np.int32) def generate_shapelist_data(attrs: List[Dict[str, Any]]): return np.array([4]).astype(np.int32) for shape in [[2, 3, 4]]: for num_input in [0, 1, 2]: for dtype in [5, 2, 3]: for str_value in ["2", "23", "-1"]: self.num_input = num_input value = float(str_value) if np.random.choice([False, True]): str_value = str_value else: str_value = "" dics = [ { "str_value": str_value, "value": value, "shape": shape, "dtype": dtype, }, {"axis": -1}, ] dics_intput = [ {"ValueTensor": ["value_data"]}, { "ShapeTensor": ["shape_data"], }, { "ShapeTensorList": [ "shapeT1_data", "shapeT2_data", ], }, {}, ] ops_config = [ { "op_type": "fill_constant", "op_inputs": dics_intput[num_input], "op_outputs": { "Out": ["out_data"], }, "op_attrs": dics[0], }, ] def generate_input(): return np.random.random([1, 1]).astype(np.float32) ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "value_data": TensorConfig( data_gen=partial(generate_value_data, dics) ), "shape_data": TensorConfig( data_gen=partial(generate_shape_data, dics) ), "shapeT1_data": TensorConfig( data_gen=partial( generate_shapelist_data, dics ) ), "shapeT2_data": TensorConfig( data_gen=partial( generate_shapelist_data, dics ) ), }, outputs=["out_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): self.input_shape = [1, 1] max_shape = list(self.input_shape) min_shape = list(self.input_shape) opt_shape = list(self.input_shape) for i in range(len(self.input_shape)): max_shape[i] = max_shape[i] + 1 self.dynamic_shape.min_input_shape = {"Y_data": min_shape} self.dynamic_shape.max_input_shape = {"Y_data": max_shape} self.dynamic_shape.opt_input_shape = {"Y_data": opt_shape} def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): if self.num_input < 3: return 0, 6 return 1, 5 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # Don't test static shape # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-3 def add_skip_trt_case(self): pass def test(self): self.add_skip_trt_case() self.run_test() if __name__ == "__main__": unittest.main()