# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertCumsum(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: ver = paddle_infer.get_trt_compile_version() if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7220: return False return True def sample_program_configs(self): self.trt_param.workspace_size = 1073741824 def generate_input1(): if self.dims == 2: self.input_shape = [2, 3] return np.random.random([2, 3]).astype(np.int32) elif self.dims == 3: self.input_shape = [2, 3, 4] return np.random.random([2, 3, 4]).astype(np.int64) elif self.dims == 4: self.input_shape = [4, 3, 32, 32] return np.random.random([4, 3, 32, 32]).astype(np.float32) - 0.5 for dims in [2, 3, 4]: for axis in range(-1, dims): for type in ["int32", "int64", "float32", "float64"]: self.dims = dims ops_config = [ { "op_type": "cumsum", "op_inputs": { "X": ["input_data"], }, "op_outputs": {"Out": ["output_data"]}, "op_attrs": {"axis": axis, "dtype": type}, } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input1) ), }, outputs=["output_data"], ) yield program_config # no op_attrs for dims in [2, 3, 4]: self.dims = dims ops_config = [ { "op_type": "cumsum", "op_inputs": { "X": ["input_data"], }, "op_outputs": {"Out": ["output_data"]}, "op_attrs": {}, } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input1) ), }, outputs=["output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(): if self.dims == 2: self.dynamic_shape.min_input_shape = { "input_data": [2, 3], } self.dynamic_shape.max_input_shape = { "input_data": [2, 3], } self.dynamic_shape.opt_input_shape = { "input_data": [2, 3], } elif self.dims == 3: self.dynamic_shape.min_input_shape = { "input_data": [2, 3, 4], } self.dynamic_shape.max_input_shape = { "input_data": [2, 3, 4], } self.dynamic_shape.opt_input_shape = { "input_data": [2, 3, 4], } elif self.dims == 4: self.dynamic_shape.min_input_shape = { "input_data": [4, 3, 32, 32], } self.dynamic_shape.max_input_shape = { "input_data": [4, 3, 32, 32], } self.dynamic_shape.opt_input_shape = { "input_data": [4, 3, 32, 32], } def generate_trt_nodes_num(attrs, dynamic_shape): ver = paddle_infer.get_trt_compile_version() if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 7220: return 0, 3 return 1, 2 def clear_dynamic_shape(): self.dynamic_shape.max_input_shape = {} self.dynamic_shape.min_input_shape = {} self.dynamic_shape.opt_input_shape = {} attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() # for dynamic_shape generate_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-2 def test(self): self.run_test() if __name__ == "__main__": unittest.main()