# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import Any, Dict, List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer # Special case class TrtConvertConv3dTransposeTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: ver = paddle_infer.get_trt_compile_version() if ver[0] * 1000 + ver[1] * 100 + ver[2] * 10 < 8400: return False return True def sample_program_configs(self): self.trt_param.workspace_size = 1073741824 def generate_input1(batch, num_channels, attrs: List[Dict[str, Any]]): return np.ones([batch, num_channels, 4, 20, 30]).astype(np.float32) def generate_weight1(num_channels, attrs: List[Dict[str, Any]]): return np.random.random([num_channels, 64, 3, 3, 3]).astype( np.float32 ) num_channels = 128 batch = 1 # in_channels self.num_channels = num_channels dics = [ { "data_fromat": 'NCHW', "dilations": [1, 1, 1], "padding_algorithm": 'EXPLICIT', "groups": 1, "paddings": [1, 1, 1], "strides": [2, 2, 2], "output_padding": [1, 1, 1], "output_size": [], } ] ops_config = [ { "op_type": "conv3d_transpose", "op_inputs": { "Input": ["input_data"], "Filter": ["conv3d_weight"], }, "op_outputs": {"Output": ["output_data"]}, "op_attrs": dics[0], } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={ "conv3d_weight": TensorConfig( data_gen=partial(generate_weight1, num_channels, dics) ) }, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input1, batch, num_channels, dics) ) }, outputs=["output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): self.dynamic_shape.min_input_shape = { "input_data": [1, 128, 4, 20, 30], } self.dynamic_shape.max_input_shape = { "input_data": [1, 128, 4, 20, 30], } self.dynamic_shape.opt_input_shape = { "input_data": [1, 128, 4, 20, 30], } def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): return 1, 2 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-3 # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-3 def add_skip_trt_case(self): pass def test(self): self.add_skip_trt_case() self.run_test() def test_quant(self): self.add_skip_trt_case() self.run_test(quant=True) if __name__ == "__main__": unittest.main()