# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import List, Tuple import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertArgMinTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: input_shape = program_config.inputs["arg_min_input"].shape axis = program_config.ops[0].attrs["axis"] if axis < 0: axis += len(input_shape) if len(input_shape) <= axis or axis == 0: return False return True def sample_program_configs(self): def generate_input(rank, batch): dims = [batch] for i in range(rank - 1): dims.append((i + 1) * 8) size = np.prod(dims) return (np.arange(size) % 10 - 5).astype("float32").reshape(dims) for rank in [3, 4]: for batch in [1, 4]: for axis in [-1, 0, 1, 2, 3]: for keepdims in [True, False]: self.rank = rank flatten = False dtype = 2 ops_config = [ { "op_type": "arg_min", "op_inputs": {"X": ["arg_min_input"]}, "op_outputs": {"Out": ["arg_min_out"]}, "op_attrs": { "axis": axis, "keepdims": keepdims, "flatten": flatten, "dtype": dtype, }, "outputs_dtype": {"arg_min_out": np.int32}, } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={}, inputs={ "arg_min_input": TensorConfig( data_gen=partial( generate_input, rank, batch ) ) }, outputs=["arg_min_out"], ) yield program_config def sample_predictor_configs( self, program_config ) -> Tuple[paddle_infer.Config, List[int], float]: def generate_dynamic_shape(attrs): if self.rank == 3: self.dynamic_shape.min_input_shape = { "arg_min_input": [1, 8, 16] } self.dynamic_shape.max_input_shape = { "arg_min_input": [4, 8, 16] } self.dynamic_shape.opt_input_shape = { "arg_min_input": [3, 8, 16] } else: self.dynamic_shape.min_input_shape = { "arg_min_input": [1, 8, 16, 24] } self.dynamic_shape.max_input_shape = { "arg_min_input": [4, 8, 16, 24] } self.dynamic_shape.opt_input_shape = { "arg_min_input": [1, 8, 16, 24] } def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): return 1, 2 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] self.trt_param.workspace_size = 1024000 # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-3 # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-3 def test(self): self.run_test() if __name__ == "__main__": unittest.main()