# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial from typing import Any, Dict, List import numpy as np from program_config import ProgramConfig, TensorConfig from trt_layer_auto_scan_test import TrtLayerAutoScanTest import paddle.inference as paddle_infer class TrtConvertAffineChannelTest(TrtLayerAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self): def generate_input1(batch, dims, attrs: List[Dict[str, Any]]): if dims == 2: return np.ones([batch, 64]).astype(np.float32) else: if attrs[0]['data_layout'] == "NCHW": return np.ones([batch, 3, 64, 64]).astype(np.float32) else: return np.ones([batch, 64, 64, 3]).astype(np.float32) def generate_weight1(dims, attrs: List[Dict[str, Any]]): if dims == 2: return np.random.random([64]).astype(np.float32) else: return np.random.random([3]).astype(np.float32) for dims in [2, 4]: for batch in [1, 2, 4]: for data_layout in ["NCHW", "NHWC"]: self.dims = dims dics = [{"data_layout": data_layout}] ops_config = [ { "op_type": "affine_channel", "op_inputs": { "X": ["input_data"], "Scale": ["scale"], "Bias": ["bias"], }, "op_outputs": {"Out": ["output_data"]}, "op_attrs": dics[0], } ] ops = self.generate_op_config(ops_config) program_config = ProgramConfig( ops=ops, weights={ "scale": TensorConfig( data_gen=partial(generate_weight1, dims, dics) ), "bias": TensorConfig( data_gen=partial(generate_weight1, dims, dics) ), }, inputs={ "input_data": TensorConfig( data_gen=partial( generate_input1, batch, dims, dics ) ) }, outputs=["output_data"], ) yield program_config def sample_predictor_configs( self, program_config ) -> (paddle_infer.Config, List[int], float): def generate_dynamic_shape(attrs): if self.dims == 2: self.dynamic_shape.min_input_shape = {"input_data": [1, 32]} self.dynamic_shape.max_input_shape = {"input_data": [4, 64]} self.dynamic_shape.opt_input_shape = {"input_data": [2, 64]} else: if attrs[0]['data_layout'] == "NCHW": self.dynamic_shape.min_input_shape = { "input_data": [1, 3, 32, 32] } self.dynamic_shape.max_input_shape = { "input_data": [4, 3, 64, 64] } self.dynamic_shape.opt_input_shape = { "input_data": [1, 3, 64, 64] } else: self.dynamic_shape.min_input_shape = { "input_data": [1, 32, 32, 3] } self.dynamic_shape.max_input_shape = { "input_data": [4, 64, 64, 3] } self.dynamic_shape.opt_input_shape = { "input_data": [1, 64, 64, 3] } def clear_dynamic_shape(): self.dynamic_shape.min_input_shape = {} self.dynamic_shape.max_input_shape = {} self.dynamic_shape.opt_input_shape = {} def generate_trt_nodes_num(attrs, dynamic_shape): if self.dims == 4 and attrs[0]['data_layout'] == "NCHW": return 1, 2 else: return 0, 3 attrs = [ program_config.ops[i].attrs for i in range(len(program_config.ops)) ] # for static_shape clear_dynamic_shape() self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, False ), (1e-3, 1e-3) # for dynamic_shape generate_dynamic_shape(attrs) self.trt_param.precision = paddle_infer.PrecisionType.Float32 yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), 1e-5 self.trt_param.precision = paddle_infer.PrecisionType.Half yield self.create_inference_config(), generate_trt_nodes_num( attrs, True ), (1e-3, 1e-3) def test(self): self.run_test() if __name__ == "__main__": unittest.main()