# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from inference_pass_test import InferencePassTest import paddle from paddle import fluid from paddle.fluid import core from paddle.fluid.core import AnalysisConfig, PassVersionChecker class TensorRTSubgraphPassConv3dTest(InferencePassTest): def setUp(self): self.init_params() self.set_params() with fluid.program_guard(self.main_program, self.startup_program): data = paddle.static.data( name="data", shape=[-1, 3, 6, 32, 32], dtype="float32" ) conv_out = paddle.static.nn.conv3d( input=data, num_filters=self.conv_num_filters, filter_size=self.conv_filter_size, groups=self.conv_groups, padding=self.conv_padding, bias_attr=False, use_cudnn=self.use_cudnn, stride=self.stride, act=None, ) self.feeds = { "data": np.random.random([1, 3, 6, 32, 32]).astype("float32"), } self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassConv3dTest.TensorRTParam( 1 << 30, 32, 1, self.precision, self.use_static, False ) self.fetch_list = [conv_out] def init_params(self): self.conv_num_filters = 6 self.conv_filter_size = 6 self.conv_groups = 3 self.conv_padding = [1, 1, 1] self.use_cudnn = True self.use_static = False self.precision = AnalysisConfig.Precision.Float32 self.stride = 1 def set_params(self): pass def test_check_output(self): if core.is_compiled_with_cuda(): use_gpu = True self.check_output_with_option(use_gpu) self.assertTrue( PassVersionChecker.IsCompatible('tensorrt_subgraph_pass') ) class TensorRTSubgraphPassConv3dValidPaddingTest( TensorRTSubgraphPassConv3dTest ): def set_params(self): self.conv_num_filters = 6 self.conv_filter_size = 6 self.conv_groups = 3 self.conv_padding = 'VALID' class TensorRTSubgraphPassConv3dSamePaddingTest(TensorRTSubgraphPassConv3dTest): def set_params(self): self.conv_num_filters = 6 self.conv_filter_size = 6 self.conv_groups = 3 self.conv_padding = 'SAME' class TensorRTSubgraphPassConv3dPaddingTest(TensorRTSubgraphPassConv3dTest): def set_params(self): self.conv_num_filters = 6 self.conv_filter_size = 6 self.conv_groups = 3 self.conv_padding = [2, 3, 3] class TensorRTSubgraphPassConv3dStrideTest(TensorRTSubgraphPassConv3dTest): def set_params(self): self.conv_num_filters = 6 self.conv_filter_size = 6 self.conv_groups = 3 self.conv_padding = 'SAME' self.stride = [1, 2, 2] class DynamicShapeTensorRTSubgraphPassConv3dTest(InferencePassTest): def setUp(self): self.set_params() with fluid.program_guard(self.main_program, self.startup_program): data = paddle.static.data( name="data", shape=[-1, 6, -1, -1, -1], dtype="float32" ) conv_out = paddle.static.nn.conv3d( input=data, num_filters=self.conv_num_filters, filter_size=self.conv_filter_size, groups=self.conv_groups, padding=self.conv_padding, bias_attr=False, use_cudnn=self.use_cudnn, stride=self.stride, act=None, ) self.feeds = { "data": np.random.random([1, 6, 32, 32, 8]).astype("float32"), } self.enable_trt = True self.trt_parameters = ( DynamicShapeTensorRTSubgraphPassConv3dTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Float32, False, False ) ) self.dynamic_shape_params = ( DynamicShapeTensorRTSubgraphPassConv3dTest.DynamicShapeParam( { "data": [1, 6, 8, 8, 8], "conv3d_0.tmp_0": [1, 6, 8, 8, 4], }, { "data": [32, 6, 32, 32, 8], "conv3d_0.tmp_0": [32, 6, 32, 32, 8], }, { "data": [16, 6, 16, 16, 8], "conv3d_0.tmp_0": [16, 6, 16, 16, 8], }, False, ) ) self.fetch_list = [conv_out] def set_params(self): self.conv_num_filters = 6 self.conv_filter_size = 6 self.conv_groups = 6 self.conv_padding = 'SAME' self.use_cudnn = True self.stride = [2, 2, 2] def test_check_output(self): if core.is_compiled_with_cuda(): use_gpu = True self.check_output_with_option(use_gpu) self.assertTrue( PassVersionChecker.IsCompatible('tensorrt_subgraph_pass') ) if __name__ == "__main__": unittest.main()