# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import unittest import numpy as np from inference_pass_test import InferencePassTest import paddle import paddle.nn.functional as F from paddle import fluid from paddle.fluid import core from paddle.fluid.core import AnalysisConfig, PassVersionChecker from paddle.static import nn class TensorRTSubgraphPassActivationTest(InferencePassTest): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Float32, False, False ) def setUp(self): self.setUpTensorRTParam() with fluid.program_guard(self.main_program, self.startup_program): data = paddle.static.data( name="data", shape=[-1, 6, 32, 32], dtype="float32" ) act_out = self.append_act(data) out = nn.batch_norm(act_out, is_test=True) self.feeds = { "data": np.random.random([1, 6, 32, 32]).astype("float32"), } self.fetch_list = [out] def append_act(self, x): return F.relu(x) def test_check_output(self): if core.is_compiled_with_cuda(): use_gpu = True if os.path.exists(self.path + "_opt_cache"): shutil.rmtree(self.path + "_opt_cache") if ( self.trt_parameters.precision == AnalysisConfig.Precision.Float32 ): self.check_output_with_option(use_gpu) else: self.check_output_with_option(use_gpu, 1e-3) self.assertTrue( PassVersionChecker.IsCompatible('tensorrt_subgraph_pass') ) class TensorRTSubgraphPassLeakyReluTest(TensorRTSubgraphPassActivationTest): def append_act(self, x): return paddle.nn.functional.leaky_relu(x) class TensorRTSubgraphPassRelu6Test(TensorRTSubgraphPassActivationTest): def append_act(self, x): return paddle.nn.functional.relu6(x) class TensorRTSubgraphPassSoftMaxTest(TensorRTSubgraphPassActivationTest): def append_act(self, x): return paddle.nn.functional.softmax(x) class TensorRTSubgraphPassSigmoidTest(TensorRTSubgraphPassActivationTest): def append_act(self, x): return paddle.nn.functional.sigmoid(x) class TensorRTSubgraphPassHardSwishTest(TensorRTSubgraphPassActivationTest): def append_act(self, x): return paddle.nn.functional.hardswish(x) class TensorRTSubgraphPassHardSigmoidTest(TensorRTSubgraphPassActivationTest): def append_act(self, x): return paddle.nn.functional.hardsigmoid(x) class TensorRTSubgraphPassHardSwishPluginTest( TensorRTSubgraphPassActivationTest ): def append_act(self, x): return paddle.nn.functional.hardswish(x) class TensorRTSubgraphPassClipTest(TensorRTSubgraphPassActivationTest): def append_act(self, x): return paddle.clip(x, 0, 1) class TensorRTSubgraphPassTanhTest(TensorRTSubgraphPassActivationTest): def append_act(self, x): return paddle.tanh(x) class TensorRTSubgraphPassSwishTest(TensorRTSubgraphPassActivationTest): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Float32, True, False ) def append_act(self, x): return paddle.nn.functional.swish(x) class TensorRTSubgraphPassSwishFp16SerializeTest( TensorRTSubgraphPassActivationTest ): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Half, True, False ) def append_act(self, x): return paddle.nn.functional.swish(x) class TensorRTSubgraphPassDynamicSwishFp16SerializeTest( TensorRTSubgraphPassActivationTest ): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Half, True, False ) self.dynamic_shape_params = ( TensorRTSubgraphPassActivationTest.DynamicShapeParam( {'data': [1, 6, 8, 8]}, {'data': [1, 6, 128, 128]}, {'data': [1, 6, 64, 64]}, False, ) ) def append_act(self, x): return paddle.nn.functional.swish(x) class TensorRTSubgraphPassMishTest(TensorRTSubgraphPassActivationTest): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Float32, True, False ) def append_act(self, x): return paddle.nn.functional.mish(x) class TensorRTSubgraphPassMishFp16SerializeTest( TensorRTSubgraphPassActivationTest ): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Half, True, False ) def append_act(self, x): return paddle.nn.functional.mish(x) class TensorRTSubgraphPassDynamicMishFp16SerializeTest( TensorRTSubgraphPassActivationTest ): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Half, False, False ) self.dynamic_shape_params = ( TensorRTSubgraphPassActivationTest.DynamicShapeParam( {'data': [1, 6, 8, 8]}, {'data': [1, 6, 128, 128]}, {'data': [1, 6, 64, 64]}, False, ) ) def append_act(self, x): return paddle.nn.functional.mish(x) class TensorRTSubgraphPassPreluAllTest(TensorRTSubgraphPassActivationTest): def append_act(self, x): return paddle.static.nn.prelu(x, mode='all') class TensorRTSubgraphPassPreluChannelTest(TensorRTSubgraphPassActivationTest): def append_act(self, x): return paddle.static.nn.prelu(x, mode='channel') class TensorRTSubgraphPassPreluElementTest(TensorRTSubgraphPassActivationTest): def append_act(self, x): return paddle.static.nn.prelu(x, mode='element') class TensorRTSubgraphPassPreluDynamicTest(TensorRTSubgraphPassActivationTest): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Float32, False, False ) self.dynamic_shape_params = ( TensorRTSubgraphPassActivationTest.DynamicShapeParam( {'data': [1, 6, 8, 8]}, {'data': [1, 6, 128, 128]}, {'data': [1, 6, 64, 64]}, False, ) ) def append_act(self, x): return paddle.static.nn.prelu(x, mode='all') class TensorRTSubgraphPassPreluFp16Test(TensorRTSubgraphPassActivationTest): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Half, False, False ) def append_act(self, x): return paddle.static.nn.prelu(x, mode='all') class TensorRTSubgraphPassPreluFp16SerializeTest( TensorRTSubgraphPassActivationTest ): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Half, True, False ) def append_act(self, x): return paddle.static.nn.prelu(x, mode='all') class TensorRTSubgraphPassPreluFp16DynamicTest( TensorRTSubgraphPassActivationTest ): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Half, False, False ) self.dynamic_shape_params = ( TensorRTSubgraphPassActivationTest.DynamicShapeParam( {'data': [1, 6, 8, 8]}, {'data': [1, 6, 128, 128]}, {'data': [1, 6, 64, 64]}, False, ) ) def append_act(self, x): return paddle.static.nn.prelu(x, mode='all') class TensorRTSubgraphPassPreluFp16DynamicSerializeTest( TensorRTSubgraphPassActivationTest ): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Half, True, False ) self.dynamic_shape_params = ( TensorRTSubgraphPassActivationTest.DynamicShapeParam( {'data': [1, 6, 8, 8]}, {'data': [1, 6, 128, 128]}, {'data': [1, 6, 64, 64]}, False, ) ) def append_act(self, x): return paddle.static.nn.prelu(x, mode='all') class TensorRTSubgraphPassGeluTest(TensorRTSubgraphPassActivationTest): def append_act(self, x): return paddle.nn.functional.gelu(x) class TensorRTSubgraphPassGeluDynamicTest(TensorRTSubgraphPassActivationTest): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Float32, False, False ) self.dynamic_shape_params = ( TensorRTSubgraphPassActivationTest.DynamicShapeParam( {'data': [1, 6, 8, 8]}, {'data': [1, 6, 128, 128]}, {'data': [1, 6, 64, 64]}, False, ) ) def append_act(self, x): return paddle.nn.functional.gelu(x) class TensorRTSubgraphPassGeluFp16Test(TensorRTSubgraphPassActivationTest): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Half, False, False ) def append_act(self, x): return paddle.nn.functional.gelu(x) class TensorRTSubgraphPassGeluFp16SerializeTest( TensorRTSubgraphPassActivationTest ): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Half, True, False ) def append_act(self, x): return paddle.nn.functional.gelu(x) class TensorRTSubgraphPassGeluFp16DynamicTest( TensorRTSubgraphPassActivationTest ): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Half, False, False ) self.dynamic_shape_params = ( TensorRTSubgraphPassActivationTest.DynamicShapeParam( {'data': [1, 6, 8, 8]}, {'data': [1, 6, 128, 128]}, {'data': [1, 6, 64, 64]}, False, ) ) def append_act(self, x): return paddle.nn.functional.gelu(x) class TensorRTSubgraphPassGeluFp16DynamicSerializeTest( TensorRTSubgraphPassActivationTest ): def setUpTensorRTParam(self): self.enable_trt = True self.trt_parameters = TensorRTSubgraphPassActivationTest.TensorRTParam( 1 << 30, 32, 0, AnalysisConfig.Precision.Half, True, False ) self.dynamic_shape_params = ( TensorRTSubgraphPassActivationTest.DynamicShapeParam( {'data': [1, 6, 8, 8]}, {'data': [1, 6, 128, 128]}, {'data': [1, 6, 64, 64]}, False, ) ) def append_act(self, x): return paddle.nn.functional.gelu(x) if __name__ == "__main__": unittest.main()