# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial import hypothesis.strategies as st import numpy as np from auto_scan_test import PassAutoScanTest from program_config import OpConfig, ProgramConfig, TensorConfig class TestRepeatedFcReluFusePass(PassAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_config(self, draw): x_col = draw(st.sampled_from([1])) y_col = draw(st.sampled_from([1])) axis = draw(st.sampled_from([-1, 1])) batch_size = draw(st.integers(min_value=1, max_value=4)) dim = draw(st.sampled_from([32, 64, 128])) def generate_input(): return np.random.random([batch_size, dim]).astype(np.float32) def generate_weight(shape): return np.random.random(shape).astype(np.float32) attrs = [ {"x_col": x_col, "y_col": y_col}, {"axis": axis}, {'batch_size': batch_size, 'dim': dim}, ] mul_op1 = OpConfig( type="mul", inputs={"X": ["input_data"], "Y": ["mul1_weight"]}, outputs={"Out": ["mul1_output"]}, attrs={"x_num_col_dims": x_col, "y_num_col_dims": y_col}, ) elt_op1 = OpConfig( type="elementwise_add", inputs={"X": ["mul1_output"], "Y": ["elementwise1_weight"]}, outputs={"Out": ["elementwise1_output"]}, attrs={"axis": axis}, ) relu_op1 = OpConfig( type="relu", inputs={"X": ["elementwise1_output"]}, outputs={"Out": ["relu1_output"]}, attrs={}, ) mul_op2 = OpConfig( type="mul", inputs={"X": ["relu1_output"], "Y": ["mul2_weight"]}, outputs={"Out": ["mul2_output"]}, attrs={"x_num_col_dims": x_col, "y_num_col_dims": y_col}, ) elt_op2 = OpConfig( type="elementwise_add", inputs={"X": ["mul2_output"], "Y": ["elementwise2_weight"]}, outputs={"Out": ["elementwise2_output"]}, attrs={"axis": axis}, ) relu_op2 = OpConfig( type="relu", inputs={"X": ["elementwise2_output"]}, outputs={"Out": ["relu2_output"]}, attrs={}, ) model_net = [mul_op1, elt_op1, relu_op1, mul_op2, elt_op2, relu_op2] program_config = ProgramConfig( ops=model_net, weights={ "mul1_weight": TensorConfig( data_gen=partial(generate_weight, [dim, 32]) ), "mul2_weight": TensorConfig( data_gen=partial(generate_weight, [32, 128]) ), "elementwise1_weight": TensorConfig( data_gen=partial(generate_weight, [32]) ), "elementwise2_weight": TensorConfig( data_gen=partial(generate_weight, [128]) ), }, inputs={ "input_data": TensorConfig(data_gen=partial(generate_input)), }, outputs=["relu2_output"], ) return program_config def sample_predictor_configs(self, program_config): config = self.create_inference_config() yield config, ["fusion_repeated_fc_relu"], (1e-5, 1e-5) def test(self): self.run_and_statis(passes=["repeated_fc_relu_fuse_pass"]) if __name__ == "__main__": unittest.main()