# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial import hypothesis.strategies as st import numpy as np from auto_scan_test import PassAutoScanTest from program_config import OpConfig, ProgramConfig, TensorConfig class TestOneDNNConvBnFusePass(PassAutoScanTest): def sample_program_config(self, draw): use_mkldnn = True padding_algorithm = draw(st.sampled_from(["EXPLICIT", "SAME", "VALID"])) groups = draw(st.integers(min_value=1, max_value=3)) data_format = draw(st.sampled_from(["NCHW", "NHWC"])) axis = draw(st.sampled_from([1])) filter_channel = draw(st.integers(min_value=1, max_value=16)) * 4 filter_size = draw(st.integers(min_value=1, max_value=4)) in_channel = groups * filter_channel out_channel_factor = draw(st.integers(min_value=1, max_value=16)) * 4 out_channel = groups * out_channel_factor batch_size = draw(st.integers(min_value=1, max_value=4)) dilations = draw( st.lists( st.integers(min_value=1, max_value=2), min_size=2, max_size=2 ) ) paddings = draw( st.lists( st.integers(min_value=0, max_value=2), min_size=2, max_size=2 ) ) strides = draw( st.lists( st.integers(min_value=1, max_value=2), min_size=2, max_size=2 ) ) epsilon = draw(st.floats(min_value=0.0, max_value=0.001)) x_shape = ( [batch_size, in_channel, 64, 64] if data_format == "NCHW" else [batch_size, 64, 64, in_channel] ) w_shape = [out_channel, filter_channel, filter_size, filter_size] scale_shape = [out_channel] bias_shape = [out_channel] var_shape = [out_channel] mean_shape = [out_channel] def generate_data(shape): return np.random.random(shape).astype(np.float32) conv2d_op = OpConfig( "conv2d", inputs={ "Input": ["conv2d_input"], "Filter": ["conv2d_weight"], }, outputs={"Output": ["conv2d_out"]}, data_format=data_format, dilations=dilations, padding_algorithm=padding_algorithm, groups=groups, paddings=paddings, strides=strides, use_mkldnn=use_mkldnn, has_bias=False, is_test=True, ) bn_op = OpConfig( "batch_norm", inputs={ "X": ["conv2d_out"], "Scale": ["batch_norm_Scale"], "Bias": ["batch_norm_Bias"], "Mean": ["batch_norm_Mean"], "Variance": ["batch_norm_Variance"], }, outputs={ "Y": ["batch_norm_Y"], "MeanOut": ["batch_norm_Mean"], "VarianceOut": ["batch_norm_Variance"], "SavedMean": ["batch_norm_SavedMean"], "SavedVariance": ["batch_norm_SavedVariance"], "ReserveSpace": ["batch_norm_ReserveSpace"], }, epsilon=epsilon, trainable_statistics=False, data_layout=data_format, is_test=True, ) ops = [conv2d_op, bn_op] program_config = ProgramConfig( ops=ops, inputs={ "conv2d_input": TensorConfig( data_gen=partial(generate_data, x_shape) ), }, weights={ "conv2d_weight": TensorConfig( data_gen=partial(generate_data, w_shape) ), "batch_norm_Scale": TensorConfig( data_gen=partial(generate_data, scale_shape) ), "batch_norm_Bias": TensorConfig( data_gen=partial(generate_data, bias_shape) ), "batch_norm_Mean": TensorConfig( data_gen=partial(generate_data, mean_shape) ), "batch_norm_Variance": TensorConfig( data_gen=partial(generate_data, var_shape) ), }, outputs=["batch_norm_Y"], ) return program_config def sample_predictor_configs(self, program_config): config = self.create_inference_config() config.enable_mkldnn() yield config, ['fused_conv2d'], (1e-5, 1e-5) def test(self): self.run_and_statis( quant=False, max_examples=100, passes=["conv_bn_fuse_pass"], ) if __name__ == "__main__": unittest.main()