# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import hypothesis.strategies as st from auto_scan_test import PassAutoScanTest from program_config import OpConfig, ProgramConfig, TensorConfig class TestConvBiasOneDNNFusePass(PassAutoScanTest): def sample_predictor_configs(self, program_config): config = self.create_inference_config(use_gpu=False) config.enable_mkldnn() yield config, ['fused_conv2d'], (1e-4, 1e-5) def is_program_valid(self, prog_config): paddings = prog_config.ops[0].attrs['paddings'] groups = prog_config.ops[0].attrs['groups'] padding_algorithm = prog_config.ops[0].attrs['padding_algorithm'] dilations = prog_config.ops[0].attrs['dilations'] data_format = prog_config.ops[0].attrs['data_format'] filter_shape = prog_config.weights['filter'].shape input_shape = prog_config.inputs['input_x'].shape height = input_shape[data_format.index('H')] width = input_shape[data_format.index('W')] if padding_algorithm == 'VALID': if (height - (dilations[0] * (filter_shape[2] - 1) + 1) <= 0) or ( width - (dilations[1] * (filter_shape[3] - 1) + 1) <= 0 ): return False if padding_algorithm == 'EXPLICIT': if ( height + paddings[0] + paddings[1] - (dilations[0] * (filter_shape[2] - 1) + 1) <= 0 ) or ( width + paddings[2] + paddings[3] - (dilations[1] * (filter_shape[3] - 1) + 1) <= 0 ): return False if data_format == 'NCHW': if input_shape[1] != filter_shape[1] * groups: return False if filter_shape[0] % groups != 0: return False else: if input_shape[3] != filter_shape[1] * groups: return False if filter_shape[0] % groups != 0: return False return True def sample_program_config(self, draw): # 1. Generate shape of input:X of conv2d x_shape = draw( st.lists( st.integers(min_value=5, max_value=100), min_size=4, max_size=4 ) ) x_shape[1] = draw(st.integers(min_value=5, max_value=10)) # 2. Generate legal attr:data_format of conv2d data_format = draw(st.sampled_from(['NCHW', 'NHWC'])) # 3. Generate legal shape of input:Y of conv2d f_shape = draw( st.lists( st.integers(min_value=1, max_value=4), min_size=4, max_size=4 ) ) if data_format == 'NCHW': f_shape[1] = x_shape[1] else: f_shape[1] = x_shape[3] # 4. Generate legal attr:strides of conv2d strides = draw( st.lists( st.integers(min_value=1, max_value=4), min_size=2, max_size=2 ) ) # 5. Generate legal attr:padding_algorithm of conv2d padding_algorithm = draw(st.sampled_from(['EXPLICIT', 'SAME', 'VALID'])) # 6. Generate legal attr:padding of conv2d padding = draw( st.lists( st.integers(min_value=1, max_value=4), min_size=4, max_size=4 ) ) # 7. Generate legal attr:groups of conv2d groups = draw(st.integers(min_value=1, max_value=3)) # 8. Generate legal attr:dilations of conv2d dilations = draw( st.lists( st.integers(min_value=1, max_value=4), min_size=2, max_size=2 ) ) # 9. Generate legal shape of input:bias of elementwise_add bias_shape = [f_shape[0]] # 10. Generate legal shape of attr:axis of elementwise_add axis = 1 if data_format == 'NCHW': axis = 1 else: axis = 3 # 11. Generate legal shape of input:bias of conv2d conv_bias_shape = [] inputs = {} weights = {} use_mkldnn = None conv_type = 'conv2d' if draw(st.booleans()): conv_bias_shape = [f_shape[0]] conv_type = 'fused_conv2d' inputs = { 'Input': ['input_x'], 'Filter': ['filter'], 'Bias': ['conv_bias'], } weights = { 'filter': TensorConfig(shape=f_shape), 'bias': TensorConfig(shape=bias_shape), 'conv_bias': TensorConfig(shape=conv_bias_shape), } use_mkldnn = True else: inputs = { 'Input': ['input_x'], 'Filter': ['filter'], } weights = { 'filter': TensorConfig(shape=f_shape), 'bias': TensorConfig(shape=bias_shape), } use_mkldnn = False conv2d_op = OpConfig( conv_type, inputs=inputs, outputs={'Output': ['conv2d_out']}, strides=strides, padding_algorithm=padding_algorithm, paddings=padding, groups=groups, dilations=dilations, data_format=data_format, use_mkldnn=use_mkldnn, ) add_op = OpConfig( 'elementwise_add', inputs={'X': ['conv2d_out'], 'Y': ['bias']}, outputs={'Out': ['add_out']}, axis=axis, ) ops = [conv2d_op, add_op] program_config = ProgramConfig( ops=ops, weights=weights, inputs={'input_x': TensorConfig(shape=x_shape)}, outputs=ops[-1].outputs['Out'], ) return program_config def test(self): self.run_and_statis( quant=False, passes=['conv_bias_mkldnn_fuse_pass'], max_examples=130 ) if __name__ == '__main__': unittest.main()