# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial import hypothesis.strategies as st import numpy as np from auto_scan_test import MkldnnAutoScanTest from hypothesis import given from program_config import OpConfig, ProgramConfig, TensorConfig class TestMkldnnPreluOp(MkldnnAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: # if mode is channel, and in_shape is 1 rank if ( len(program_config.inputs['input_data'].shape) == 1 and program_config.ops[0].attrs['mode'] == 'channel' ): return False return True def sample_program_configs(self, *args, **kwargs): def generate_input(*args, **kwargs): return np.random.random(kwargs['in_shape']).astype(np.float32) def generate_alpha(*args, **kwargs): if kwargs["mode"] == "all": return np.random.random(size=(1)).astype(np.float32) elif kwargs["mode"] == "channel": if len(kwargs['in_shape']) <= 1: # not valid case, just return 0 return np.zeros(1).astype(np.float32) if kwargs['data_format'] == 'NCHW': return np.random.random(kwargs['in_shape'][1]).astype( np.float32 ) else: return np.random.random(kwargs['in_shape'][-1]).astype( np.float32 ) else: if len(kwargs['in_shape']) <= 1: # not valid case, just return 0 return np.zeros(1).astype(np.float32) return np.random.random(kwargs['in_shape']).astype(np.float32) prelu_op = OpConfig( type="prelu", inputs={"X": ["input_data"], "Alpha": ["alpha_weight"]}, outputs={"Out": ["output_data"]}, attrs={ "mode": kwargs['mode'], "data_format": kwargs['data_format'], }, ) program_config = ProgramConfig( ops=[prelu_op], weights={ "alpha_weight": TensorConfig( data_gen=partial(generate_alpha, *args, **kwargs) ) }, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input, *args, **kwargs) ), }, outputs=["output_data"], ) yield program_config def sample_predictor_configs(self, program_config): config = self.create_inference_config(use_mkldnn=True) yield config, (1e-5, 1e-5) def add_skip_pass_case(self): pass @given( mode=st.sampled_from(['all', 'channel', 'element']), data_format=st.sampled_from(['NCHW', 'NHWC']), in_shape=st.lists( st.integers(min_value=1, max_value=32), min_size=1, max_size=4 ), ) def test(self, *args, **kwargs): self.add_skip_pass_case() self.run_test(quant=False, *args, **kwargs) if __name__ == "__main__": unittest.main()