# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial import hypothesis.strategies as st import numpy as np from auto_scan_test import MkldnnAutoScanTest from hypothesis import given from program_config import OpConfig, ProgramConfig, TensorConfig class TestMKLDNNLogSoftmaxOp(MkldnnAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_configs(self, *args, **kwargs): def generate_input(*args, **kwargs): return np.random.random(kwargs['in_shape']).astype(np.float32) logsoftmax_op = OpConfig( type="log_softmax", inputs={"X": ["input_data"]}, outputs={"Out": ["output_data"]}, attrs={"axis": kwargs['axis']}, ) program_config = ProgramConfig( ops=[logsoftmax_op], weights={}, inputs={ "input_data": TensorConfig( data_gen=partial(generate_input, *args, **kwargs) ), }, outputs=["output_data"], ) yield program_config def sample_predictor_configs(self, program_config): config = self.create_inference_config(use_mkldnn=True) yield config, (1e-5, 1e-5) @given( axis=st.sampled_from([-2, -1, 0, 1]), in_shape=st.lists( st.integers(min_value=2, max_value=5), min_size=3, max_size=5 ), ) def test(self, *args, **kwargs): self.run_test(quant=False, *args, **kwargs) if __name__ == "__main__": unittest.main()