# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import hypothesis.strategies as st from auto_scan_test import PassAutoScanTest from program_config import OpConfig, ProgramConfig, TensorConfig class TestInt8ScaleCalculationMkldnnPass(PassAutoScanTest): def sample_predictor_configs(self, program_config): config = self.create_inference_config(use_gpu=False) config.pass_builder().append_pass("int8_scale_calculation_mkldnn_pass") yield config, ["conv2d"], (1e-4, 1e-5) def is_program_valid(self, prog_config): paddings = prog_config.ops[0].attrs["paddings"] strides = prog_config.ops[0].attrs["strides"] groups = prog_config.ops[0].attrs["groups"] padding_algorithm = prog_config.ops[0].attrs["padding_algorithm"] dilations = prog_config.ops[0].attrs["dilations"] data_format = prog_config.ops[0].attrs["data_format"] filter_shape = prog_config.weights["filter"].shape input_shape = prog_config.inputs["input_x"].shape if padding_algorithm == "VALID": if ( (input_shape[2] - (dilations[0] * (filter_shape[2] - 1) + 1)) / strides[0] + 1 ) <= 1 or ( (input_shape[3] - (dilations[1] * (filter_shape[3] - 1) + 1)) / strides[1] + 1 ) <= 1: return False if padding_algorithm == "EXPLICIT": if ( ( input_shape[2] + paddings[0] + paddings[1] - (dilations[0] * (filter_shape[2] - 1) + 1) ) / strides[0] + 1 ) <= 1 or ( ( input_shape[3] + paddings[2] + paddings[3] - (dilations[1] * (filter_shape[3] - 1) + 1) ) / strides[1] + 1 ) <= 1: return False if data_format == "NCHW": if input_shape[1] != filter_shape[1] * groups: return False if filter_shape[0] % groups != 0: return False else: if input_shape[3] != filter_shape[1] * groups: return False if filter_shape[0] % groups != 0: return False return True def sample_program_config(self, draw): x_shape = draw( st.lists( st.integers(min_value=5, max_value=100), min_size=4, max_size=4 ) ) x_shape[1] = draw(st.integers(min_value=5, max_value=10)) data_format = draw(st.sampled_from(["NCHW", "NHWC"])) f_shape = draw( st.lists( st.integers(min_value=1, max_value=4), min_size=4, max_size=4 ) ) if data_format == "NCHW": f_shape[1] = x_shape[1] else: f_shape[1] = x_shape[3] strides = draw( st.lists( st.integers(min_value=1, max_value=4), min_size=2, max_size=2 ) ) padding_algorithm = draw(st.sampled_from(["EXPLICIT", "SAME", "VALID"])) padding = draw( st.lists( st.integers(min_value=1, max_value=4), min_size=4, max_size=4 ) ) groups = draw(st.integers(min_value=1, max_value=3)) dilations = draw( st.lists( st.integers(min_value=1, max_value=4), min_size=2, max_size=2 ) ) bias_shape = [f_shape[0]] inputs = {} weights = {} use_mkldnn = True has_bias = draw(st.booleans()) if has_bias: inputs = { "Input": ["input_x"], "Filter": ["filter"], } weights = { "filter": TensorConfig(shape=f_shape), "bias": TensorConfig(shape=bias_shape), } else: inputs = { "Input": ["input_x"], "Filter": ["filter"], } weights = { "filter": TensorConfig(shape=f_shape), } conv2d_op = OpConfig( "conv2d", inputs=inputs, outputs={"Output": ["conv2d_out"]}, strides=strides, padding_algorithm=padding_algorithm, paddings=padding, groups=groups, dilations=dilations, data_format=data_format, use_mkldnn=use_mkldnn, mkldnn_data_type="int8", ) ops = [conv2d_op] program_config = ProgramConfig( ops=ops, weights=weights, inputs={"input_x": TensorConfig(shape=x_shape)}, outputs=["conv2d_out"], ) return program_config def test(self): self.run_and_statis( quant=False, max_examples=100, passes=["int8_scale_calculation_mkldnn_pass"], ) if __name__ == "__main__": unittest.main()