# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial import hypothesis.strategies as st import numpy as np from auto_scan_test import PassAutoScanTest from program_config import OpConfig, ProgramConfig, TensorConfig from paddle.fluid import core @unittest.skipIf( not core.is_compiled_with_cuda(), "core is not compiled with CUDA" ) class TestInplaceOpPass(PassAutoScanTest): def is_program_valid(self, program_config: ProgramConfig) -> bool: return True def sample_program_config(self, draw): def generate_input(): return np.random.random(x_shape).astype(np.float32) def generate_tmp1(val): return np.array([val]).astype(np.int32) def generate_tmp2(val): return np.array([val]).astype(np.int32) def generate_tmp3(val): return np.array([val]).astype(np.int32) def generate_shape(val): return np.array(val).astype(np.int32) x_shape = draw( st.lists( st.integers(min_value=1, max_value=10), min_size=4, max_size=4 ) ) shape = [0, -1, x_shape[-1]] scale_op = OpConfig( "scale", inputs={"X": ["scale_in"]}, outputs={"Out": ["scale_out"]}, scale=1.3, bias=0.1, bias_after_scale=False, ) test_case = draw( st.sampled_from( ["simple_reshape", "shape_tensor1", "shape_tensor2"] ) ) if test_case == "simple_reshape": reshape_op = OpConfig( "reshape2", inputs={"X": ["scale_out"]}, outputs={ "Out": ["reshape_out"], "XShape": ["reshape_xshape_out"], }, shape=shape, ) ops = [scale_op, reshape_op] program_config = ProgramConfig( ops=ops, inputs={ "scale_in": TensorConfig(data_gen=partial(generate_input)), }, weights={}, outputs=["reshape_out"], ) return program_config elif test_case == "shape_tensor1": shape = [-1, -1, x_shape[-1]] reshape_op = OpConfig( "reshape2", inputs={ "X": ["scale_out"], "ShapeTensor": ["tmp1", "tmp2", "tmp3"], }, outputs={ "Out": ["reshape_out"], "XShape": ["reshape_xshape_out"], }, shape=shape, ) ops = [scale_op, reshape_op] program_config = ProgramConfig( ops=ops, inputs={ "scale_in": TensorConfig(data_gen=partial(generate_input)), "tmp1": TensorConfig( data_gen=partial(generate_tmp1, x_shape[0]) ), "tmp2": TensorConfig( data_gen=partial(generate_tmp2, x_shape[1] * x_shape[2]) ), "tmp3": TensorConfig( data_gen=partial(generate_tmp3, x_shape[-1]) ), }, weights={}, outputs=["reshape_out"], ) return program_config else: shape = [0, -1, x_shape[-1]] reshape_op = OpConfig( "reshape2", inputs={"X": ["scale_out"], "Shape": ["shape"]}, outputs={ "Out": ["reshape_out"], "XShape": ["reshape_xshape_out"], }, shape=shape, ) ops = [scale_op, reshape_op] program_config = ProgramConfig( ops=ops, inputs={ "scale_in": TensorConfig(data_gen=partial(generate_input)), "shape": TensorConfig( data_gen=partial( generate_shape, [x_shape[0], x_shape[1] * x_shape[2], x_shape[3]], ) ), }, weights={}, outputs=["reshape_out"], ) return program_config def sample_predictor_configs(self, program_config): config = self.create_inference_config(use_gpu=True) yield config, ['scale', 'reshape2'], (1e-5, 1e-5) def add_ignore_pass_case(self): pass def test(self): self.run_and_statis( quant=False, passes=["inplace_op_var_pass"], ) if __name__ == "__main__": unittest.main()