# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from types import MethodType import numpy as np import paddle from paddle import _legacy_C_ops, nn from paddle.distributed import fleet from paddle.distributed.fleet.utils.hybrid_parallel_util import ( obtain_optimizer_parameters_list, ) from paddle.fluid import framework from paddle.fluid.dygraph import base as imperative_base from paddle.fluid.dygraph import to_variable from paddle.framework import core class MixPrecisionLayer(nn.Layer): def __init__(self, layers, dtype="float16"): super().__init__(layers.full_name() + "_mix_precision") self._layers = layers self._dtype = dtype assert self._dtype in ["float16", "bfloat16"] for param in self._layers.parameters(): if not hasattr(param, "main_grad"): param.main_grad = None param._register_grad_hook(self._update_main_grad_hook(param)) def _update_main_grad_hook(self, param): """Create the update_main_grad hook for backprop.""" # Hook used for back-prop and grad-merge. @paddle.autograd.no_grad() def param_hook(tmp_grad): assert ( param.grad is None ), "In main_grad node, param.grad should be None, but find param[{}] has grad.".format( param.name ) if param.main_grad is None: param.main_grad = core.eager.Tensor( value=tmp_grad.cast(paddle.float32).value(), place=tmp_grad.place, name="main_grad@" + param.name, ) else: param.main_grad.add_(tmp_grad) tmp_grad._clear_data() return None return param_hook def forward(self, *inputs, **kwargs): outputs = self._layers(*inputs, **kwargs) return outputs def state_dict( self, destination=None, include_sublayers=True, structured_name_prefix="", ): return self._layers.state_dict( destination=destination, include_sublayers=include_sublayers, structured_name_prefix=structured_name_prefix, ) @framework.deprecate_stat_dict def set_state_dict(self, state_dict, use_structured_name=True): self._layers.set_state_dict( state_dict, use_structured_name=use_structured_name ) class MixPrecisionOptimizer: def __init__(self, optimizer): self._inner_opt = optimizer self._parameter_list = obtain_optimizer_parameters_list(optimizer) @imperative_base.no_grad @framework.dygraph_only def step(self): if not isinstance(self._parameter_list[0], dict): params_grads = [] for param in self._parameter_list: if param.stop_gradient: continue grad_var = param.main_grad if paddle.in_dynamic_mode(): if ( hasattr(grad_var, "is_selected_rows") and grad_var.is_selected_rows() and self._inner_opt.regularization is not None ): raise RuntimeError( "AdamW don't support weight_decay with sparse parameters, please set it to None." ) else: if ( hasattr(grad_var, "_is_sparse") and grad_var._is_sparse() and self._inner_opt.regularization is not None ): raise RuntimeError( "AdamW don't support weight_decay with sparse parameters, please set it to None." ) params_grads.append((param, grad_var)) optimize_ops = self._inner_opt._apply_optimize( loss=None, startup_program=None, params_grads=params_grads ) else: # optimize parameters in groups for param_group in self._inner_opt._param_groups: params_grads = defaultdict(lambda: []) for param in param_group['params']: if param.stop_gradient: continue grad_var = param.main_grad if paddle.in_dynamic_mode(): if ( hasattr(grad_var, "is_selected_rows") and grad_var.is_selected_rows() and self._inner_opt.regularization is not None ): raise RuntimeError( "AdamW don't support weight_decay with sparse parameters, please set it to None." ) else: if ( hasattr(grad_var, "_is_sparse") and grad_var._is_sparse() and self._inner_opt.regularization is not None ): raise RuntimeError( "AdamW don't support weight_decay with sparse parameters, please set it to None." ) params_grads['params'].append((param, grad_var)) params_grads.update( {k: v for k, v in param_group.items() if k != 'params'} ) self._apply_optimize( loss=None, startup_program=None, params_grads=params_grads ) @framework.dygraph_only def clear_grad(self, set_to_zero=True): param_list = [] if self._parameter_list is None or not isinstance( self._parameter_list[0], dict ): for p in self._parameter_list: if not p.stop_gradient: param_list.append(p) else: for param_group in self._param_groups: for p in param_group['params']: if not p.stop_gradient: param_list.append(p) for p in param_list: if hasattr(p, "main_grad") and p.main_grad is not None: if set_to_zero: p.main_grad.zero_() else: p.main_grad._clear() p.main_grad = None elif not hasattr(p, "main_grad"): p.clear_gradient(set_to_zero) def __getattr__(self, item): return getattr(self._inner_opt, item) def unscale_method(self, optimizer): if not self._enable: return param_grads = [] if getattr(optimizer, '_param_groups', None) and isinstance( optimizer._param_groups[0], dict ): for group in optimizer._param_groups: for param in group['params']: if param.main_grad is not None: assert param.main_grad.dtype == core.VarDesc.VarType.FP32 param_grads.append(param.main_grad) else: for param in optimizer._parameter_list: if param.main_grad is not None: assert param.main_grad.dtype == core.VarDesc.VarType.FP32 param_grads.append(param.main_grad) temp_found_inf = to_variable(np.array([0]).astype(np.bool_)) if len(param_grads): _legacy_C_ops.check_finite_and_unscale( param_grads, self._scale, param_grads, temp_found_inf, ) self._found_inf = 1 if temp_found_inf else 0 hcg = fleet.get_hybrid_communicate_group() if hcg is not None and hcg.nranks > hcg.get_data_parallel_world_size(): is_found_inf = paddle.to_tensor([self._found_inf], dtype="int32") paddle.distributed.all_reduce( is_found_inf, op=paddle.distributed.ReduceOp.MAX, group=None ) self._found_inf = int(is_found_inf) class MixPrecisionScaler: def __init__(self, scaler): self._inner_scaler = scaler self._inner_scaler._unscale = MethodType(unscale_method, scaler) def __getattr__(self, item): return getattr(self._inner_scaler, item)