# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid import Program, program_guard class TestRot90_API(unittest.TestCase): """Test rot90 api.""" def test_static_graph(self): paddle.enable_static() startup_program = fluid.Program() train_program = fluid.Program() with fluid.program_guard(train_program, startup_program): input = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.rot90(input, k=1, axes=[0, 1]) output = paddle.rot90(output, k=1, axes=[0, 1]) output = output.rot90(k=1, axes=[0, 1]) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) res = exe.run(train_program, feed={'input': img}, fetch_list=[output]) out_np = np.array(res[0]) out_ref = np.array([[4, 1], [5, 2], [6, 3]]).astype(np.float32) self.assertTrue( (out_np == out_ref).all(), msg='rot90 output is wrong, out =' + str(out_np)) def test_static_k_0(self): paddle.enable_static() input = fluid.data(name='input', dtype='float32', shape=[2, 3]) startup_program = fluid.Program() train_program = fluid.Program() with fluid.program_guard(train_program, startup_program): input = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.rot90(input, k=0, axes=[0, 1]) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) res = exe.run(train_program, feed={'input': img}, fetch_list=[output]) out_np = np.array(res[0]) out_ref = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) self.assertTrue( (out_np == out_ref).all(), msg='rot90 output is wrong, out =' + str(out_np)) def test_static_k_2(self): paddle.enable_static() input = fluid.data(name='input', dtype='float32', shape=[2, 3]) startup_program = fluid.Program() train_program = fluid.Program() with fluid.program_guard(train_program, startup_program): input = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.rot90(input, k=2, axes=[0, 1]) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) res = exe.run(train_program, feed={'input': img}, fetch_list=[output]) out_np = np.array(res[0]) out_ref = np.array([[6, 5, 4], [3, 2, 1]]).astype(np.float32) self.assertTrue( (out_np == out_ref).all(), msg='rot90 output is wrong, out =' + str(out_np)) def test_static_k_3(self): paddle.enable_static() input = fluid.data(name='input', dtype='float32', shape=[2, 3]) startup_program = fluid.Program() train_program = fluid.Program() with fluid.program_guard(train_program, startup_program): input = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.rot90(input, k=3, axes=[0, 1]) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) res = exe.run(train_program, feed={'input': img}, fetch_list=[output]) out_np = np.array(res[0]) out_ref = np.array([[4, 1], [5, 2], [6, 3]]).astype(np.float32) self.assertTrue( (out_np == out_ref).all(), msg='rot90 output is wrong, out =' + str(out_np)) def test_static_neg_k_1(self): paddle.enable_static() input = fluid.data(name='input', dtype='float32', shape=[2, 3]) startup_program = fluid.Program() train_program = fluid.Program() with fluid.program_guard(train_program, startup_program): input = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.rot90(input, k=-1, axes=[0, 1]) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) res = exe.run(train_program, feed={'input': img}, fetch_list=[output]) out_np = np.array(res[0]) out_ref = np.array([[4, 1], [5, 2], [6, 3]]).astype(np.float32) self.assertTrue( (out_np == out_ref).all(), msg='rot90 output is wrong, out =' + str(out_np)) def test_static_neg_k_2(self): paddle.enable_static() input = fluid.data(name='input', dtype='float32', shape=[2, 3]) startup_program = fluid.Program() train_program = fluid.Program() with fluid.program_guard(train_program, startup_program): input = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.rot90(input, k=-2, axes=[0, 1]) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) res = exe.run(train_program, feed={'input': img}, fetch_list=[output]) out_np = np.array(res[0]) out_ref = np.array([[6, 5, 4], [3, 2, 1]]).astype(np.float32) self.assertTrue( (out_np == out_ref).all(), msg='rot90 output is wrong, out =' + str(out_np)) def test_static_neg_k_3(self): paddle.enable_static() input = fluid.data(name='input', dtype='float32', shape=[2, 3]) startup_program = fluid.Program() train_program = fluid.Program() with fluid.program_guard(train_program, startup_program): input = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.rot90(input, k=-3, axes=[0, 1]) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) res = exe.run(train_program, feed={'input': img}, fetch_list=[output]) out_np = np.array(res[0]) out_ref = np.array([[3, 6], [2, 5], [1, 4]]).astype(np.float32) self.assertTrue( (out_np == out_ref).all(), msg='rot90 output is wrong, out =' + str(out_np)) def test_error_api(self): paddle.enable_static() ## dims error def run1(): input = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.rot90(input, k=1, axes=[0]) self.assertRaises(ValueError, run1) ## input dims error def run2(): input = fluid.data(name='input', dtype='float32', shape=[2]) output = paddle.rot90(input, k=1, axes=[0, 1]) self.assertRaises(ValueError, run2) def run3(): input = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.rot90(input, k=1, axes=[0, 0]) self.assertRaises(ValueError, run3) def run4(): input = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.rot90(input, k=1, axes=[3, 1]) self.assertRaises(ValueError, run4) def run5(): input = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.rot90(input, k=1, axes=[0, 3]) self.assertRaises(ValueError, run5) def test_dygraph(self): img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) with fluid.dygraph.guard(): inputs = fluid.dygraph.to_variable(img) ret = paddle.rot90(inputs, k=1, axes=[0, 1]) ret = ret.rot90(1, axes=[0, 1]) ret = paddle.rot90(ret, k=1, axes=[0, 1]) out_ref = np.array([[4, 1], [5, 2], [6, 3]]).astype(np.float32) self.assertTrue( (ret.numpy() == out_ref).all(), msg='rot90 output is wrong, out =' + str(ret.numpy())) if __name__ == "__main__": unittest.main()