/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/elementwise/elementwise_add_op.h" #include #include #include "paddle/fluid/operators/elementwise/elementwise_op.h" namespace paddle { namespace operators { template struct SameDimsElemwiseAdd< platform::CPUDeviceContext, T, typename std::enable_if::value>::type> { void operator()(const framework::ExecutionContext &ctx, const framework::Tensor *x, const framework::Tensor *y, framework::Tensor *z) { auto blas = math::GetBlas(ctx); blas.VADD(x->numel(), x->data(), y->data(), z->data()); } }; template struct SameDimsElemwiseAdd< platform::CPUDeviceContext, T, typename std::enable_if::value>::type> { void operator()(const framework::ExecutionContext &ctx, const framework::Tensor *x, const framework::Tensor *y, framework::Tensor *z) { auto eigen_x = framework::EigenVector::Flatten(*x); auto eigen_y = framework::EigenVector::Flatten(*y); auto eigen_z = framework::EigenVector::Flatten(*z); auto &place = *ctx.template device_context() .eigen_device(); eigen_z.device(place) = eigen_x + eigen_y; } }; class ElementwiseAddOpMaker : public ElementwiseOpMaker { protected: std::string GetName() const override { return "Add"; } std::string GetEquation() const override { return "Out = X + Y"; } void AddInputX() override { AddInput("X", "(Variable), Tensor or LoDTensor of any dimensions. Its dtype " "should be int32, int64, float32, float64."); } void AddInputY() override { AddInput("Y", "(Variable), Tensor or LoDTensor of any dimensions. Its dtype " "should be int32, int64, float32, float64."); } std::string GetOpFuntionality() const override { return "Add two tensors element-wise"; } }; class ElementwiseAddDoubleGradDescMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: std::unique_ptr Apply() const override { std::unique_ptr op(new framework::OpDesc()); op->SetType("elementwise_add_grad_grad"); op->SetInput("Y", Input("Y")); op->SetInput("DOut", Input(framework::GradVarName("Out"))); op->SetInput("DDX", OutputGrad(framework::GradVarName("X"))); op->SetInput("DDY", OutputGrad(framework::GradVarName("Y"))); op->SetAttrMap(Attrs()); op->SetOutput("DDOut", InputGrad(framework::GradVarName("Out"))); return op; } }; } // namespace operators } // namespace paddle REGISTER_ELEMWISE_GRAD_MAKER(elementwise_add, Add); REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(elementwise_add, Add); namespace ops = paddle::operators; REGISTER_OPERATOR(elementwise_add_grad, ops::ElementwiseOpExplicitGrad, ops::ElementwiseGradOpInplace, ops::ElementwiseGradNoBufVarsInference, ops::ElementwiseAddDoubleGradDescMaker); REGISTER_OPERATOR(elementwise_add_grad_grad, ops::ElementwiseOpDoubleGradWithoutDXDY, ops::ElementwiseDoubleGradOpInplace, ops::ElementwiseDoubleGradNoBufVarsInference); REGISTER_OP_CPU_KERNEL( elementwise_add, ops::ElementwiseAddKernel, ops::ElementwiseAddKernel, ops::ElementwiseAddKernel, ops::ElementwiseAddKernel); REGISTER_OP_CPU_KERNEL( elementwise_add_grad, ops::ElementwiseAddGradKernel, ops::ElementwiseAddGradKernel, ops::ElementwiseAddGradKernel, ops::ElementwiseAddGradKernel); REGISTER_OP_CPU_KERNEL( elementwise_add_grad_grad, ops::ElementwiseAddDoubleGradKernel, ops::ElementwiseAddDoubleGradKernel, ops::ElementwiseAddDoubleGradKernel, ops::ElementwiseAddDoubleGradKernel);