/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include "boost/optional.hpp" #include "paddle/fluid/framework/data_layout_transform.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/platform/mkldnn_helper.h" #include "paddle/fluid/platform/place.h" namespace paddle { namespace platform { using user_function = std::function(const float*)>; using memory = mkldnn::memory; class MKLDNNHandler { public: MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : dev_ctx_(dev_ctx), engine_(engine), key_common_(base_key) { // TODO(jczaja): Make it faster auto tid = std::this_thread::get_id(); std::stringstream ss; ss << tid; key_ = key_common_ + "-t:" + ss.str(); if (platform::get_cur_mkldnn_session_id() != platform::kMKLDNNSessionID_Default) { key_ = key_common_; } } std::shared_ptr AcquireSrcMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_src_mem_p"); } std::shared_ptr AcquireSecondSrcMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_src2_mem_p"); } std::shared_ptr AcquireWeightsMemory( const mkldnn::memory::desc& md, void* ptr, user_function custom_func = {}) { return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func); } std::shared_ptr AcquireBiasMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_bias_mem_p"); } std::shared_ptr AcquireDstMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_dst_mem_p"); } std::shared_ptr AcquireDiffDstMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p"); } std::shared_ptr AcquireDiffSrcMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p"); } std::shared_ptr AcquireMemoryFromPrimitive( mkldnn::memory::primitive_desc mdp, void* ptr, const std::string& suffix) { auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { mem_p = std::make_shared(mdp, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } // This incarnation of AcquireMemory can call user function eg. custom reorder // or preprocessing routine if needed std::shared_ptr AcquireMemory( const mkldnn::memory::desc& md, void* ptr, const std::string& suffix, user_function custom_func = {}) { /*Generate key*/ auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { // Call custom reorder/preprocessing func if available if (custom_func) { auto reordered_data = custom_func(reinterpret_cast(ptr)); dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data); ptr = reinterpret_cast(reordered_data.get()); } mem_p = std::make_shared( mkldnn::memory::primitive_desc{md, engine_}, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } std::shared_ptr AcquireMemory( const std::shared_ptr& user_memory_p, const std::shared_ptr& target_memory_p, const std::string& suffix, std::vector& pipeline) { // NOLINT auto local_key = key_ + suffix; auto key_reorder_p = key_ + suffix + "reorder_p"; auto stored_reorder_p = std::static_pointer_cast( dev_ctx_.GetBlob(key_reorder_p)); if (stored_reorder_p) { pipeline.push_back(*stored_reorder_p); } else { auto reorder_p = std::make_shared(*user_memory_p, *target_memory_p); dev_ctx_.SetBlob(key_reorder_p, reorder_p); pipeline.push_back(*reorder_p); } return target_memory_p; } std::shared_ptr AcquireMemory( mkldnn::memory::primitive_desc& mpd, // NOLINT mkldnn::memory::primitive_desc& user_mpd, // NOLINT const std::shared_ptr user_memory_p, const std::string& suffix, std::vector& pipeline, // NOLINT bool is_persistent = false, bool is_INT8 = false, std::vector scale_data = {1.0f}, int mask = 0) { // create reorder primitive if the input format is not the preferred one auto local_key = key_ + suffix; auto key_reorder_p = key_ + suffix + "reorder_p"; auto target_memory_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (target_memory_p == nullptr) { target_memory_p = user_memory_p; std::shared_ptr reorder_p; if (mpd != user_mpd) { target_memory_p = std::make_shared(mpd); std::shared_ptr reorder_p; if (is_INT8) { mkldnn::primitive_attr attri; // attribute for int8 weights and bias data reorder. attri.set_output_scales(mask, scale_data); auto reorder_pd = std::shared_ptr( new mkldnn::reorder::primitive_desc(user_mpd, mpd, attri)); reorder_p = std::shared_ptr(new mkldnn::reorder( *reorder_pd, *user_memory_p, *target_memory_p)); } else { reorder_p = std::make_shared(*user_memory_p, *target_memory_p); } dev_ctx_.SetBlob(key_reorder_p, reorder_p); pipeline.push_back(*reorder_p); } dev_ctx_.SetBlob(local_key, target_memory_p); } else if (!is_persistent) { // Make reorder if needed auto reorder_p = std::static_pointer_cast( dev_ctx_.GetBlob(key_reorder_p)); if (reorder_p != nullptr) { pipeline.push_back(*reorder_p); } } return target_memory_p; } static std::string GetHash(mkldnn::memory::dims& operand_dims, // NOLINT const std::string& suffix) { return dims2str(operand_dims) + suffix; } static void AppendKey( std::string* key, const mkldnn::memory::dims& input_dims, const mkldnn::memory::dims& weights_dims, const std::vector& strides, const std::vector& paddings, const std::vector& dilations, const int& groups, const mkldnn::memory::data_type& srcdt, const mkldnn::memory::format& format, const bool& relu, const bool& residual, const bool& brelu, const std::string& suffix) { AppendKeyDims(key, input_dims); AppendKeyDims(key, weights_dims); AppendKeyVec(key, strides); AppendKeyVec(key, paddings); AppendKeyVec(key, dilations); AppendKey(key, std::to_string(groups)); AppendKey(key, std::to_string(srcdt)); AppendKey(key, std::to_string(format)); AppendKey(key, std::to_string(relu)); AppendKey(key, std::to_string(residual)); AppendKey(key, std::to_string(brelu)); AppendKey(key, suffix); } static void AppendKeyDims(std::string* key, const mkldnn::memory::dims& dims) { for (unsigned int i = 0; i < dims.size(); i++) { AppendKey(key, std::to_string(dims[i])); } } static void AppendKeyVec(std::string* key, const std::vector& dims) { for (unsigned int i = 0; i < dims.size(); i++) { AppendKey(key, std::to_string(dims[i])); } } static void AppendKey(std::string* key, const std::string& s) { key->append(s); } protected: static std::string dims2str(const mkldnn::memory::dims& operand_dims) { std::string dstr = ""; for (size_t i = 0; i < operand_dims.size(); ++i) { dstr += std::to_string(operand_dims[i]) + "-"; } return dstr; } protected: const MKLDNNDeviceContext& dev_ctx_; mkldnn::engine engine_; std::string key_; std::string key_common_; public: static constexpr int MaxKeyLength = 256; }; class SumMKLDNNHandler : public MKLDNNHandler { public: SumMKLDNNHandler(const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key) {} std::shared_ptr AcquireSumPrimitiveDescriptor( const std::vector>& src_mems, const std::vector& scales, const mkldnn::memory::desc& dst_md) { const std::string key_sum_pd = key_ + "@sum_pd"; sum_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_sum_pd)); if (sum_pd_ == nullptr) { // Get vector of inputs primitive descriptors std::vector src_pds; for (auto& input_mem : src_mems) { src_pds.push_back(input_mem->get_primitive_desc()); } sum_pd_.reset(new mkldnn::sum::primitive_desc(dst_md, scales, src_pds)); dev_ctx_.SetBlob(key_sum_pd, sum_pd_); } return sum_pd_; } std::shared_ptr AcquireDstMemoryFromPrimitive(void* ptr) { return this->AcquireMemoryFromPrimitive(sum_pd_->dst_primitive_desc(), ptr, "@dst_mem_p"); } std::shared_ptr AcquireSum( std::shared_ptr dst_memory, std::vector* inputs) { auto prim_key = key_ + "@sum_p"; auto sum_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (sum_p == nullptr) { sum_p = std::make_shared(*(sum_pd_), *inputs, *(dst_memory)); dev_ctx_.SetBlob(prim_key, sum_p); } return sum_p; } private: std::shared_ptr sum_pd_; }; class TransposeMKLDNNHandler : public MKLDNNHandler { public: TransposeMKLDNNHandler(std::vector& dims, // NOLINT std::vector& axis, // NOLINT const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key), dims_(dims), axis_(axis), logical_axis_(dims.size(), 0) {} std::shared_ptr AcquireSrcMemory( const mkldnn::memory::format& fmt, void* ptr) { auto local_key = key_ + "@user_src_mem_p"; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { // Make memory descriptor using input format, unless it // cannot be trusted (nchw) then make up memory fmt manually for (size_t i = 0; i < logical_axis_.size(); ++i) { logical_axis_[i] = i; } auto src_md = fmt != mkldnn::memory::format::nchw ? platform::MKLDNNMemDesc( dims_, platform::MKLDNNGetDataType(), fmt) : Axis2MemoryDesc(dims_, logical_axis_); mem_p = std::make_shared( mkldnn::memory::primitive_desc{src_md, engine_}, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } std::shared_ptr AcquireDstMemory(framework::Tensor* output, platform::Place place) { auto local_key = key_ + "@user_dst_mem_p"; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { auto dst_mdp = mkldnn::memory::primitive_desc{ Axis2MemoryDesc(dims_, axis_), engine_}; auto dst_data = output->mutable_data(place, dst_mdp.get_size()); mem_p = std::make_shared(dst_mdp, dst_data); dev_ctx_.SetBlob(local_key, mem_p); } else { auto dst_data = output->mutable_data(place); mem_p->set_data_handle(dst_data); } return mem_p; } std::shared_ptr AcquireTranspose( std::shared_ptr dst_memory_p, std::shared_ptr src_memory_p) { auto prim_key = key_ + "@transpose_p"; auto transpose_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (transpose_p == nullptr) { transpose_p = std::make_shared(*(src_memory_p), *(dst_memory_p)); dev_ctx_.SetBlob(prim_key, transpose_p); } return transpose_p; } static std::string GetHash(std::vector& shape, // NOLINT std::vector& axis, // NOLINT const std::string& suffix) { return dims2str(shape) + dims2str(axis) + suffix; } protected: mkldnn_memory_desc_t Axis2MemoryDesc(std::vector& nchw_tz, // NOLINT std::vector& axis // NOLINT ) { mkldnn_memory_desc_t mem_fmt; mem_fmt.primitive_kind = mkldnn_memory; mem_fmt.ndims = axis.size(); for (unsigned int i = 0; i < nchw_tz.size(); ++i) { mem_fmt.dims[i] = nchw_tz[i]; // logical dimensions (nchw format, // regardless physical layout) } mem_fmt.data_type = mkldnn_f32; mem_fmt.format = mkldnn_blocked; unsigned int total_stride = 1; for (int i = nchw_tz.size() - 1; i >= 0; --i) { mem_fmt.layout_desc.blocking.padding_dims[i] = nchw_tz[i]; // logical dimensions (nchw format, regardless physical // layout) mem_fmt.layout_desc.blocking.block_dims[i] = 1; mem_fmt.layout_desc.blocking.offset_padding_to_data[i] = 0; // no offset mem_fmt.layout_desc.blocking.strides[0][axis[i]] = total_stride; mem_fmt.layout_desc.blocking.strides[1][axis[i]] = 1; total_stride *= nchw_tz[axis[i]]; } mem_fmt.layout_desc.blocking.offset_padding = 0; // no initial offset return mem_fmt; } private: std::vector dims_; std::vector axis_; std::vector logical_axis_; }; class ReorderMKLDNNHandler : public MKLDNNHandler { public: ReorderMKLDNNHandler(std::vector& dims, // NOLINT framework::proto::VarType::Type vtype, mkldnn::memory::data_type dtype, const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key), dims_(dims), vtype_(vtype), dtype_(dtype) {} std::shared_ptr AcquireSrcMemory( const mkldnn::memory::format& fmt, void* ptr) { auto local_key = key_ + "@user_src_mem_p"; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { auto src_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt); mem_p = std::make_shared( mkldnn::memory::primitive_desc{src_md, engine_}, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); } return mem_p; } std::shared_ptr AcquireDstMemory( framework::Tensor* output, const mkldnn::memory::format& fmt, platform::Place place) { auto local_key = key_ + "@user_dst_mem_p"; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); if (mem_p == nullptr) { auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt); auto dst_mdp = mkldnn::memory::primitive_desc{dst_md, engine_}; auto dst_data = output->mutable_data(place, vtype_); mem_p = std::make_shared(dst_mdp, dst_data); dev_ctx_.SetBlob(local_key, mem_p); } else { auto dst_data = output->mutable_data(place, vtype_); mem_p->set_data_handle(dst_data); } return mem_p; } std::shared_ptr AcquireReorder( std::shared_ptr dst_memory_p, std::shared_ptr src_memory_p) { auto prim_key = key_ + "@reorder_p"; auto reorder_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (reorder_p == nullptr) { reorder_p = std::make_shared(*(src_memory_p), *(dst_memory_p)); dev_ctx_.SetBlob(prim_key, reorder_p); } return reorder_p; } static std::string GetHash(std::vector& shape, // NOLINT mkldnn::memory::format in_fmt, mkldnn::memory::format out_fmt, const std::string& suffix) { return dims2str(shape) + std::to_string(in_fmt) + "->" + std::to_string(out_fmt) + "#" + suffix; } private: std::vector dims_; framework::proto::VarType::Type vtype_; mkldnn::memory::data_type dtype_; }; template struct convolutional_algorithm; template <> struct convolutional_algorithm { static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct; }; template <> struct convolutional_algorithm { static constexpr mkldnn::algorithm T = mkldnn::algorithm::deconvolution_direct; }; template class ConvMKLDNNTemplateHandler : public MKLDNNHandler { public: ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key) {} // TODO(jczaja): remove after conv int8 is adapted ConvMKLDNNTemplateHandler( std::shared_ptr conv_pd, const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key) { conv_pd_ = conv_pd; } ConvMKLDNNTemplateHandler( std::shared_ptr conv_pd, std::shared_ptr conv_bwd_data_pd, std::shared_ptr conv_bwd_weights_pd, const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key), conv_pd_(conv_pd), conv_bwd_weights_pd_(conv_bwd_weights_pd), conv_bwd_data_pd_(conv_bwd_data_pd) { // If we are in Grad operatgor then update a key with BWD suffix to // distinguish from FWD memory primitives key_ += "-BWD"; } size_t GetDstMemorySize() const { return conv_pd_->dst_primitive_desc().get_size(); } mkldnn::memory::format GetDstFormat() const { return static_cast( conv_pd_->dst_primitive_desc().desc().data.format); } size_t GetDiffWeightsMemorySize() const { return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size(); } size_t GetDiffSourceMemorySize() const { return conv_bwd_data_pd_->diff_src_primitive_desc().get_size(); } std::shared_ptr AcquireSrcMemoryFromWeightsPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto src_pd = conv_bwd_weights_pd_->src_primitive_desc(); auto user_pd = user_memory_p->get_primitive_desc(); return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@weights-src_mem_p", pipeline); } std::shared_ptr AcquireDiffDstMemoryFromWeightsPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc(); auto user_pd = user_memory_p->get_primitive_desc(); return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p, "@weights-diff_dst_mem_p", pipeline); } std::shared_ptr AcquireDiffWeightsMemoryFromWeightsPrimitive( void* ptr) { return this->AcquireMemoryFromPrimitive( conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr, "@diff_weights_mem_p"); } std::shared_ptr AcquireDiffDstMemoryFromDataPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc(); auto user_pd = user_memory_p->get_primitive_desc(); return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p, "@data-diff_dst_mem_p", pipeline); } std::shared_ptr AcquireWeightsMemoryFromDataPrimitive( const std::shared_ptr user_weights_memory_p, std::vector& pipeline) { // NOLINT auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc(); auto user_pd = user_weights_memory_p->get_primitive_desc(); return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p, "@data-weights_mem_p", pipeline); } std::shared_ptr AcquireResidualDataMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p"); } std::shared_ptr AcquireDstMemoryFromResidualDataMemory( const std::shared_ptr& user_residual_memory_p, void* dst_ptr, std::vector& pipeline) { // NOLINT return this->AcquireMemory(user_residual_memory_p, this->AcquireDstMemoryFromPrimitive(dst_ptr), "@residual_data_mem_p", pipeline); } std::shared_ptr AcquireDiffSrcMemoryFromDataPrimitive( void* ptr) { return this->AcquireMemoryFromPrimitive( conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p"); } std::shared_ptr AcquireDstMemoryFromPrimitive(void* ptr) { return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr, "@dst_mem_p"); } std::shared_ptr AcquireSrcMemoryFromPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto src_pd = conv_pd_->src_primitive_desc(); auto user_pd = user_memory_p->get_primitive_desc(); return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p", pipeline); } std::shared_ptr AcquireWeightsMemoryFromPrimitive( const std::shared_ptr user_weights_memory_p, std::vector& pipeline, // NOLINT bool is_persistent = false, bool is_INT8 = false, std::vector scale_data = {1.0f}, int mask = 0) { auto user_weights_pd = user_weights_memory_p->get_primitive_desc(); auto weights_pd = conv_pd_->weights_primitive_desc(); return this->AcquireMemory( weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p", pipeline, is_persistent, is_INT8, scale_data, mask); } std::shared_ptr AcquireBiasMemoryFromPrimitive( const std::shared_ptr user_bias_memory_p, std::vector& pipeline, // NOLINT bool is_persistent = false, bool is_INT8 = false, std::vector scale_data = {1.0f}, int mask = 0) { // NOLINT auto user_bias_pd = user_bias_memory_p->get_primitive_desc(); auto bias_pd = conv_pd_->bias_primitive_desc(); return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p, "@bias_mem_p", pipeline, is_persistent, is_INT8, scale_data, mask); } mkldnn::primitive_attr CreatePostOps(bool fuse_relu, bool fuse_residual_conn, bool fuse_brelu, float fuse_brelu_threshold) const { mkldnn::primitive_attr conv_attr; mkldnn::post_ops post_operations; // Fusion with Elementwise layer relies on adding a sum post-operation with // the scale parameter. It is assumed that when fuse_residual_connection is // true, the output tensor contains the data coming from residual // connection. The result of this post_op is: // Output = scale * Output + Conv_Out. if (fuse_residual_conn) { post_operations.append_sum(1.0f); } // Fusion with ReLU layer is executed through the PostOps feature. Create a // PostOps object and configure it to execute an eltwise relu operation. if (fuse_relu) { constexpr float scale = 1.0f; constexpr float negative_slope = 0.0f; constexpr float placeholder = 0.0f; post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu, negative_slope, placeholder); } if (fuse_brelu) { constexpr float scale = 1.0f; constexpr float placeholder = 0.0f; post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_bounded_relu, fuse_brelu_threshold, placeholder); } conv_attr.set_post_ops(post_operations); return conv_attr; } std::shared_ptr AcquireConvolutionPrimitiveDescriptor( const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights, boost::optional bias, const mkldnn::memory::desc& dst, const std::vector& strides, const std::vector& paddings, const mkldnn::engine& engine, const bool fuse_relu, const bool fuse_residual_conn, const bool fuse_brelu, const float fuse_brelu_threshold, mkldnn::prop_kind fwd_prop_kind) { // Conv PD has to be passed to Grad op that // may be exxecuted by diffrent thread, hence // for that one we use key that does not contain TID const std::string key_conv_pd = key_common_ + "@conv_pd"; conv_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_conv_pd)); if (conv_pd_ == nullptr) { static std::mutex acquire_barrier; std::lock_guard block_threads_until_finish_this_job( acquire_barrier); conv_pd_ = std::static_pointer_cast( dev_ctx_.GetBlob(key_conv_pd)); if (conv_pd_ == nullptr) { mkldnn::memory::dims stride_dims = strides; mkldnn::memory::dims padding_dims = paddings; auto conv_desc = bias ? typename forward_t::desc( fwd_prop_kind, convolutional_algorithm::T, src, weights, *bias, dst, stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero) : typename forward_t::desc( fwd_prop_kind, convolutional_algorithm::T, src, weights, dst, stride_dims, padding_dims, padding_dims, mkldnn::padding_kind::zero); mkldnn::primitive_attr conv_attr = CreatePostOps( fuse_relu, fuse_residual_conn, fuse_brelu, fuse_brelu_threshold); conv_pd_.reset(new typename forward_t::primitive_desc( conv_desc, conv_attr, engine)); // Save conv_pd/src_memory/weights_memory for backward pass dev_ctx_.SetBlob(key_conv_pd, conv_pd_); } } return conv_pd_; } std::shared_ptr AcquireConvolution( std::shared_ptr src_memory_p, std::shared_ptr weights_memory_p, std::shared_ptr dst_memory_p) { auto prim_key = key_ + "@conv_p"; auto conv_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (conv_p == nullptr) { conv_p = std::make_shared(*conv_pd_, *src_memory_p, *weights_memory_p, *dst_memory_p); dev_ctx_.SetBlob(prim_key, conv_p); } return conv_p; } std::shared_ptr AcquireConvolution( std::shared_ptr src_memory_p, std::shared_ptr weights_memory_p, std::shared_ptr bias_memory_p, std::shared_ptr dst_memory_p) { auto prim_key = key_ + "@conv_p"; auto conv_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (conv_p == nullptr) { conv_p = std::make_shared(*conv_pd_, *src_memory_p, *weights_memory_p, *bias_memory_p, *dst_memory_p); dev_ctx_.SetBlob(prim_key, conv_p); } return conv_p; } std::shared_ptr AcquireConvolutionBackwardWeights( std::shared_ptr src_memory_p, std::shared_ptr diff_dst_memory_p, std::shared_ptr diff_weights_memory_p) { auto prim_key = key_ + "@conv_bwd_weights_p"; auto conv_bwd_weights_p = std::static_pointer_cast( dev_ctx_.GetBlob(prim_key)); if (conv_bwd_weights_p == nullptr) { // create backward conv primitive for weights conv_bwd_weights_p = std::make_shared( *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p, *diff_weights_memory_p); dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p); } return conv_bwd_weights_p; } std::shared_ptr AcquireConvolutionBackwardData( std::shared_ptr diff_dst_memory_p, std::shared_ptr weights_memory_p, std::shared_ptr diff_src_memory_p) { auto prim_key = key_ + "@conv_bwd_data_p"; auto conv_bwd_data_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); if (conv_bwd_data_p == nullptr) { conv_bwd_data_p = std::make_shared( *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p, *diff_src_memory_p); dev_ctx_.SetBlob(prim_key, conv_bwd_data_p); } return conv_bwd_data_p; } // Generate keys for storing/retriving primitives for this operator // TODO(jczaja): Make hashing function more optimial static std::string GetHash(mkldnn::memory::dims& input_dims, // NOLINT mkldnn::memory::dims& weights_dims, // NOLINT const bool& fuse_relu, // NOLINT const bool& fuse_brelu, // NOLINT std::vector& strides, // NOLINT std::vector& paddings, // NOLINT std::vector& dilations, // NOLINT int groups, const std::string& suffix) { return dims2str(input_dims) + dims2str(weights_dims) + std::to_string(fuse_relu) + std::to_string(fuse_brelu) + dims2str(strides) + dims2str(paddings) + dims2str(dilations) + std::to_string(groups) + suffix; } // Generate keys for storing/retriving primitives for this operator // TODO(jczaja): Make hashing function more optimial static std::string GetHash(mkldnn::memory::dims& input_dims, // NOLINT mkldnn::memory::dims& weights_dims, // NOLINT std::vector& strides, // NOLINT std::vector& paddings, // NOLINT std::vector& dilations, // NOLINT int groups, const std::string& suffix) { return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) + dims2str(paddings) + dims2str(dilations) + std::to_string(groups) + suffix; } private: std::shared_ptr conv_pd_; std::shared_ptr conv_bwd_weights_pd_; std::shared_ptr conv_bwd_data_pd_; }; using ConvMKLDNNHandler = ConvMKLDNNTemplateHandler; using ConvTransposeMKLDNNHandler = ConvMKLDNNTemplateHandler; template static std::shared_ptr SetDstMemory( const framework::ExecutionContext& ctx, framework::Tensor* output, const std::shared_ptr& handler) { T* output_data = output->mutable_data(ctx.GetPlace(), handler->GetDstMemorySize()); std::shared_ptr dst_memory_p = handler->AcquireDstMemoryFromPrimitive(to_void_cast(output_data)); return dst_memory_p; } template static std::shared_ptr SetDstMemory( const framework::ExecutionContext& ctx, framework::Tensor* output, const framework::Tensor* residual_param, const mkldnn::memory::desc& user_residual_md, const std::shared_ptr& handler, std::vector* pipeline) { const T* residual_param_data = residual_param->data(); PADDLE_ENFORCE(residual_param_data != nullptr, "Provide data if you want MKLDNN conv+elementwise_add fusion"); std::shared_ptr user_residual_memory_p = handler->AcquireResidualDataMemory(user_residual_md, to_void_cast(residual_param_data)); T* output_data = output->mutable_data(ctx.GetPlace()); std::shared_ptr dst_memory_p = handler->AcquireDstMemoryFromResidualDataMemory( user_residual_memory_p, to_void_cast(output_data), *pipeline); return dst_memory_p; } template static void SetDstMemoryHandler( const framework::ExecutionContext& ctx, framework::Tensor* output, const std::shared_ptr& handler, std::shared_ptr* dst_memory_p) { T* output_data = output->mutable_data(ctx.GetPlace(), handler->GetDstMemorySize()); (*dst_memory_p)->set_data_handle(to_void_cast(output_data)); } template static void SetDstMemoryQuantized( const framework::ExecutionContext& ctx, framework::Tensor* output, std::vector dst_tz, const mkldnn::engine& engine, std::shared_ptr& dst_pd, // NOLINT std::shared_ptr& dst_memory) { // NOLINT T* output_data = output->mutable_data(ctx.GetPlace()); const size_t dst_dims = dst_tz.size(); memory::format dst_fmt; PADDLE_ENFORCE(dst_dims <= 5, "Dst memory for quantization can not have dims > 5"); dst_fmt = platform::MKLDNNFormatForSize(dst_dims, memory::format::nhwc); auto dst_md = platform::MKLDNNMemDesc( {dst_tz}, paddle::framework::ToMKLDNNDataType( framework::DataTypeTrait::DataType()), dst_fmt); dst_pd.reset(new mkldnn::memory::primitive_desc(dst_md, engine)); dst_memory.reset(new mkldnn::memory(*dst_pd, to_void_cast(output_data))); } } // namespace platform } // namespace paddle