# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import math import operator import typing import paddle from . import primops from .primops import ( add, bernoulli, broadcast, concat, cos, div, eq, erf, exp, fill_const, gather, ge, gt, log, matmul, mul, ne, neg, reduce_sum, reshape, rsqrt, scatter_add, select, set_value, sin, slice_assign, slice_select, split, sqrt, sub, tanh, transpose, uniform_random, ) from .primreg import ( REGISTER_JVP, REGISTER_ORIG2PRIM, REGISTER_PRIM2ORIG, REGISTER_TRANSPOSE, lookup_fn, lookup_jvp, lookup_orig2prim, lookup_prim2orig, lookup_transpose, op_position_inputs, op_position_output, ) from .utils import INT_DTYPE_2_STRING, get_output_var_list def _orig2prim(op, *args): _lowerrule = lookup_orig2prim(op.type) return _lowerrule(op, *args) def _prim2orig(op, *args): _lowerrule = lookup_prim2orig(op.type) return _lowerrule(op, *args) def _jvp(op, *args): _jvprule = lookup_jvp(op.type) return _jvprule(op, *args) def _transpose(op, dot_checker, *args): _transposerule = lookup_transpose(op.type) return _transposerule(op, dot_checker, *args) def linear_jvp(op, *args, **kwargs): fn = lookup_fn(op.type) out_dot = fn(*args, **kwargs) return out_dot # Register orig2prim lower rules """ These original ops are fully supported: elementwise_add elementwise_sub elementwise_mul tanh fill_zeros_like fill_any_like sum index_select scale assign sqrt log select equal elementwise_pow dropout uniform_random These original ops are partially supported: matmul_v2 reshape2 concat slice p_norm """ @REGISTER_ORIG2PRIM('elementwise_add') def elementwise_add_orig2prim(op, x, y): if x.shape != y.shape: y = broadcast(y, shape=x.shape) if op.attr('Scale_x') - 1.0 > 1e-5: scale_x = fill_const( shape=x.shape, dtype=x.dtype, value=op.attr('Scale_x') ) x = mul(x, scale_x) if op.attr('Scale_y') - 1.0 > 1e-5: scale_y = fill_const( shape=y.shape, dtype=y.dtype, value=op.attr('Scale_y') ) y = mul(y, scale_y) z = add(x, y) if op.attr('Scale_out') - 1.0 > 1e-5: scale_out = fill_const( shape=z.shape, dtype=z.dtype, value=op.attr('Scale_out') ) z = mul(z, scale_out) return z @REGISTER_ORIG2PRIM('elementwise_sub') def elementwise_sub_orig2prim(op, x, y): if x.shape != y.shape: y = broadcast(y, shape=x.shape) if op.attr('Scale_x') - 1.0 > 1e-5: scale_x = fill_const( shape=x.shape, dtype=x.dtype, value=op.attr('Scale_x') ) x = mul(x, scale_x) if op.attr('Scale_y') - 1.0 > 1e-5: scale_y = fill_const( shape=y.shape, dtype=y.dtype, value=op.attr('Scale_y') ) y = mul(y, scale_y) z = sub(x, y) if op.attr('Scale_out') - 1.0 > 1e-5: scale_out = fill_const( shape=z.shape, dtype=z.dtype, value=op.attr('Scale_out') ) z = mul(z, scale_out) return z @REGISTER_ORIG2PRIM('elementwise_mul') def elementwise_mul_orig2prim(op, x, y): if x.shape != y.shape: y = broadcast(y, shape=x.shape) if op.attr('Scale_x') - 1.0 > 1e-5: scale_x = fill_const( shape=x.shape, dtype=x.dtype, value=op.attr('Scale_x') ) x = mul(x, scale_x) if op.attr('Scale_y') - 1.0 > 1e-5: scale_y = fill_const( shape=y.shape, dtype=y.dtype, value=op.attr('Scale_y') ) y = mul(y, scale_y) z = mul(x, y) if op.attr('Scale_out') - 1.0 > 1e-5: scale_out = fill_const( shape=z.shape, dtype=z.dtype, value=op.attr('Scale_out') ) z = mul(z, scale_out) return z @REGISTER_ORIG2PRIM('elementwise_div') def elementwise_div_orig2prim(op, x, y): if x.shape != y.shape: y = broadcast(y, shape=x.shape) return primops.div(x, y) @REGISTER_ORIG2PRIM('tanh') def tanh_orig2prim(op, x): return tanh(x) @REGISTER_ORIG2PRIM('sin') def sin_orig2prim(op, x): return sin(x) @REGISTER_ORIG2PRIM('cos') def cos_orig2prim(op, x): return cos(x) @REGISTER_ORIG2PRIM('exp') def exp_orig2prim(op, x): return exp(x) @REGISTER_ORIG2PRIM('erf') def erf_orig2prim(op, x): return erf(x) @REGISTER_ORIG2PRIM('abs') def abs_orig2prim(op, x): return primops.abs(x) @REGISTER_ORIG2PRIM('log') def log_orig2prim(op, x): return log(x) @REGISTER_ORIG2PRIM('fill_zeros_like') def fill_zeros_like_orig2prim(op, x): return fill_const(value=0.0, shape=x.shape, dtype=x.dtype) @REGISTER_ORIG2PRIM('fill_any_like') def fill_any_like_orig2prim(op, x): if op.attr('dtype') == -1: return fill_const(value=op.attr('value'), shape=x.shape, dtype=x.dtype) return fill_const( value=op.attr('value'), shape=x.shape, dtype=paddle.dtype(op.attr('dtype')), ) @REGISTER_ORIG2PRIM('fill_constant') def fill_const_orig2prim( op, shape_tensor=None, shape_tensor_list=None, value_tensor=None ): if shape_tensor or shape_tensor_list or value_tensor: raise TypeError( 'fill_const_orig2prim currently not support Tensor input of shape and value.' ) return fill_const( value=op.attr('value'), shape=op.attr('shape'), dtype=paddle.dtype(op.attr('dtype')), ) @REGISTER_ORIG2PRIM('sum') def sum_orig2prim(op, xs): x0 = xs[0] for x in xs[1:]: x0 = add(x0, x) return x0 @REGISTER_ORIG2PRIM('index_select') def index_select_orig2prim(op, index_t, x): return gather(x, indextensor=index_t, axis=op.attr('dim')) @REGISTER_ORIG2PRIM('scale') def scale_orig2prim(op, scale_t, x): if scale_t is None: scale_t = fill_const( shape=x.shape, dtype=x.dtype, value=op.attr('scale') ) bias_t = fill_const(shape=x.shape, dtype=x.dtype, value=op.attr('bias')) if op.attr('bias_after_scale'): return add(mul(x, scale_t), bias_t) else: return mul(add(x, bias_t), scale_t) @REGISTER_ORIG2PRIM('assign') def assign_orig2prim(op, x): zero_t = fill_const(shape=x.shape, dtype=x.dtype, value=0.0) return add(x, zero_t) @REGISTER_ORIG2PRIM('sqrt') def sqrt_orig2prim(op, x): return sqrt(x) @REGISTER_ORIG2PRIM('rsqrt') def rsqrt_orig2prim(op, x): return rsqrt(x) @REGISTER_ORIG2PRIM('matmul_v2') def matmul_v2_orig2prim(op, x, y): def trans(shape): ret = [i for i in range(len(shape))] ret[-1], ret[-2] = ret[-2], ret[-1] return ret assert ( len(x.shape) < 4 and len(y.shape) < 4 ), 'Do not support multi batchsize dimensions currently.' if len(x.shape) == 1: x = broadcast(x, shape=[1, x.shape[0]]) if len(y.shape) == 1: y = broadcast(y, shape=[y.shape[0], 1]) if op.attr('trans_x'): x = transpose(x, axis=trans(x.shape)) if op.attr('trans_y'): y = transpose(y, axis=trans(y.shape)) return matmul(x, y) # NOTE(lml): The second output of reshape2 Xshape, which is only used in reshape2_grad, is meanlingless in new autograd mechanism, thus we use a zero tensor instead. @REGISTER_ORIG2PRIM('reshape2') def reshape2_orig2prim(op, shape_t, shape_tl, x): assert ( shape_t is None ), 'Can not lower reshape2 into prim ops with shapetensor.' assert ( shape_tl is None ), 'Can not lower reshape2 into prim ops with shapetensorlist.' y, xshape = get_output_var_list(op) return reshape(x, shape=y.shape), fill_const( shape=xshape.shape, dtype=xshape.dtype, value=0.0 ) @REGISTER_ORIG2PRIM('concat') def concat_orig2prim(op, axis_t, xs): assert axis_t is None, 'Can not lower concat into prim ops with axistensor.' return concat(xs, axis=op.attr('axis')) @REGISTER_ORIG2PRIM('slice') def slice_orig2prim(op, ends_t, ends_tl, x, starts_t, starts_tl): assert ( starts_t is None ), 'Can not lower concat into prim ops with startstensor.' assert ends_t is None, 'Can not lower concat into prim ops with endstensor.' assert ( starts_tl is None ), 'Can not lower concat into prim ops with startstensorlist.' assert ( ends_tl is None ), 'Can not lower concat into prim ops with endstensorlist.' starts = op.attr('starts') ends = op.attr('ends') strides = [1 for _ in starts] axis = op.attr('axes') y = slice_select(x, starts=starts, ends=ends, strides=strides, axis=axis) if op.attr('decrease_axis'): y = reshape(y, shape=get_output_var_list(op)[0].shape) return y @REGISTER_ORIG2PRIM('sigmoid') def sigmoid_orig2prim(op, x): return div( fill_const(value=1.0, shape=x.shape, dtype=x.dtype), (add(fill_const(value=1.0, shape=x.shape, dtype=x.dtype), exp(neg(x)))), ) @REGISTER_ORIG2PRIM('p_norm') def p_norm_orig2prim(op, x): def num_el(shape): n = 1 for s in shape: n = n * s return n assert op.attr( 'asvector' ), 'Only support lower pnorm when asvector=True currently' if len(x.shape) > 1: x = reshape(x, shape=[num_el(x.shape)]) if abs(op.attr('porder') - 2.0) < 1e-5: return sqrt(reduce_sum(mul(x, x), axis=[0])) elif abs(op.attr('porder') - 1.0) < 1e-5: return reduce_sum(primops.abs(x), axis=[0]) else: raise RuntimeError('Only support lower l2/l1 norm currently') @REGISTER_ORIG2PRIM('cast') def cast_orig2prim(op, x): return primops.cast(x, paddle.dtype(op.attr('out_dtype'))) # TODO: support broadcast @REGISTER_ORIG2PRIM('where') def select_orig2prim(op, condition, x, y): return select(condition, x, y) @REGISTER_ORIG2PRIM('equal') def equal_orig2prim(op, x, y): if x.shape != y.shape: y = broadcast(y, shape=x.shape) return eq(x, y) @REGISTER_ORIG2PRIM('not_equal') def ne_orig2prim(op, x, y): if x.shape != y.shape: y = broadcast(y, shape=x.shape) return ne(x, y) @REGISTER_ORIG2PRIM('greater_than') def gt_orig2prim(op, x, y): if x.shape != y.shape: y = broadcast(y, shape=x.shape) return gt(x, y) @REGISTER_ORIG2PRIM('greater_equal') def ge_orig2prim(op, x, y): if x.shape != y.shape: y = broadcast(y, shape=x.shape) return ge(x, y) # paddle.pow API use "elementwise_pow" operator when y is a Tensor. @REGISTER_ORIG2PRIM('elementwise_pow') def elementwise_pow_orig2prim(op, x, y): if x.shape != y.shape: y = broadcast(y, shape=x.shape) z = primops.pow(x, y) return z # paddle.pow API use "pow" operator when y is a scalar. @REGISTER_ORIG2PRIM('pow') def pow_orig2prim(op, x, y): # x is factorTensor defined in paddle phi op. Currently it is None. return primops.pow(y, fill_const(op.attr('factor'), y.shape, y.dtype)) @REGISTER_ORIG2PRIM('square') def square_orig2prim(op, x): return primops.square(x) @REGISTER_ORIG2PRIM('elementwise_max') def elementwise_max_orig2prim(op, x, y): if x.shape != y.shape: y = broadcast(y, shape=x.shape) return primops.max(x, y) @REGISTER_ORIG2PRIM('gelu') def gelu_orig2prim(op, x): if op.attr('approximate'): cdf = mul( fill_const(0.5, x.shape, x.dtype), add( fill_const(1.0, x.shape, x.dtype), tanh( mul( fill_const(math.sqrt(2 / math.pi), x.shape, x.dtype), add( x, mul( fill_const(0.044715, x.shape, x.dtype), primops.pow( x, fill_const(3.0, x.shape, x.dtype) ), ), ), ) ), ), ) return mul(x, cdf) else: return mul( mul(fill_const(0.5, x.shape, x.dtype), x), add( fill_const(1.0, x.shape, x.dtype), erf(mul(x, fill_const(1 / math.sqrt(2.0), x.shape, x.dtype))), ), ) @REGISTER_ORIG2PRIM('dropout') def dropout_orig2prim(op, seed_t, x): assert ( seed_t is None ), 'Can not lower dropout into prim ops with seedtensor.' mask = bernoulli(shape=x.shape, dtype=x.dtype, p=op.attr('dropout_prob')) if op.attr('dropout_implementation') == 'upscale_in_train': if not op.attr('is_test'): out = div( mul(x, mask), fill_const(1.0 - op.attr('dropout_prob'), x.shape, x.dtype), ) return primops.cast(mask, dtype=paddle.uint8), out else: return primops.cast(mask, dtype=paddle.uint8), x elif op.attr('dropout_implementation') == 'downgrade_in_infer': if not op.attr('is_test'): return primops.cast(mask, dtype=paddle.uint8), mul(x, mask) else: return primops.cast(mask, dtype=paddle.uint8), mul( x, fill_const(1.0 - op.attr('dropout_prob'), x.shape, x.dtype) ) else: raise RuntimeError( 'Unsupported dropout_implementation, only support upscale_in_train and downgrade_in_infer' ) @REGISTER_ORIG2PRIM('uniform_random') def uniform_random_orig2prim(op, shape_t, shape_tl): if shape_t or shape_tl: raise TypeError( 'uniform_random_orig2prim currently not support ShapeTensor input or ShapeTensorList input.' ) min_value = op.attr('min') max_value = op.attr('max') seed = op.attr('seed') dtype = paddle.dtype(op.attr('dtype')) shape = op.attr('shape') return uniform_random(dtype, min_value, max_value, seed, shape=shape) @REGISTER_ORIG2PRIM('reduce_sum') def reduce_sum_orig2prim(op, x): axes = ( tuple(range(0, len(x.shape))) if op.attr('reduce_all') else op.attr('dim') ) return reduce_sum(x, axis=axes, keepdim=op.attr('keep_dim')) @REGISTER_ORIG2PRIM('reduce_mean') def reduce_mean_orig2prim(op, x): axes = ( tuple(range(0, len(x.shape))) if op.attr('reduce_all') else op.attr('dim') ) return primops.mean(x, axes, op.attr('keep_dim')) @REGISTER_ORIG2PRIM('batch_norm') def batch_norm_orig2prim( op, bias, run_mean, momentum_tensor, scale, run_var, x ): momentum = op.attr('momentum') eps = op.attr('epsilon') is_test = op.attr('is_test') data_layout = op.attr('data_layout') use_global_stats = op.attr('use_global_stats') trainable_statistics = op.attr('trainable_statistics') reserve_space = ( None if len(op.output_names) == 5 else get_output_var_list(op)[1] ) feature_axis = ( 1 if data_layout in ('NC', 'NCL', 'NCHW', 'NCHWD') else len(x.shape) - 1 ) use_run_stat = (is_test and (not trainable_statistics)) or use_global_stats return primops.batch_norm( x, feature_axis, scale, bias, run_mean, run_var, eps=eps, momentum=momentum, use_run_stat=use_run_stat, reserve_space=reserve_space, ) @REGISTER_ORIG2PRIM('size') def size_orig2prim(op, x): return fill_const(functools.reduce(operator.mul, x.shape), (), paddle.int64) # Register prim2orig lower rules @REGISTER_PRIM2ORIG('add_p') def add_prim2orig(op, x, y): return paddle.add(x, y) @REGISTER_PRIM2ORIG('sub_p') def sub_prim2orig(op, x, y): return paddle.subtract(x, y) @REGISTER_PRIM2ORIG('rsqrt_p') def rsqrt_prim2orig(op, x): return paddle.rsqrt(x) @REGISTER_PRIM2ORIG('mul_p') def mul_prim2orig(op, x, y): return paddle.multiply(x, y) @REGISTER_PRIM2ORIG('div_p') def div_prim2orig(op, x, y): return paddle.divide(x, y) @REGISTER_PRIM2ORIG('sqrt_p') def sqrt_prim2orig(op, x): return paddle.sqrt(x) @REGISTER_PRIM2ORIG('tanh_p') def tanh_prim2orig(op, x): return paddle.tanh(x) @REGISTER_PRIM2ORIG('sin_p') def sin_prim2orig(op, x): return paddle.sin(x) @REGISTER_PRIM2ORIG('cos_p') def cos_prim2orig(op, x): return paddle.cos(x) @REGISTER_PRIM2ORIG('exp_p') def exp_prim2orig(op, x): return paddle.exp(x) @REGISTER_PRIM2ORIG('erf_p') def erf_prim2orig(op, x): return paddle.erf(x) @REGISTER_PRIM2ORIG('abs_p') def abs_prim2orig(op, x): return paddle.abs(x) @REGISTER_PRIM2ORIG('log_p') def log_prim2orig(op, x): return paddle.log(x) @REGISTER_PRIM2ORIG('reshape_p') def reshape_prim2orig(op, x): return paddle.reshape(x, shape=op.attr('shape')) @REGISTER_PRIM2ORIG('broadcast_p') def broadcast_prim2orig(op, x): return paddle.broadcast_to(x, shape=op.attr('shape')) @REGISTER_PRIM2ORIG('transpose_p') def transpose_prim2orig(op, x): return paddle.transpose(x, perm=op.attr('axis')) @REGISTER_PRIM2ORIG('split_p') def split_prim2orig(op, x): num_or_sections = op.attr('num_or_sections') if len(num_or_sections) == 1: num_or_sections = num_or_sections[0] return paddle.split( x, num_or_sections=num_or_sections, axis=op.attr('axis') ) @REGISTER_PRIM2ORIG('concat_p') def concat_prim2orig(op, xs): return paddle.concat(xs, axis=op.attr('axis')) @REGISTER_PRIM2ORIG('reduce_sum_p') def reduce_prim2orig(op, x): return paddle.sum(x, axis=op.attr('axis'), keepdim=op.attr('keepdim')) @REGISTER_PRIM2ORIG('matmul_p') def matmul_prim2orig(op, x, y): return paddle.matmul(x, y) @REGISTER_PRIM2ORIG('slice_select_p') def slice_select_prim2orig(op, x): return paddle.strided_slice( x, axes=op.attr('axis'), starts=op.attr('starts'), ends=op.attr('ends'), strides=op.attr('strides'), ) @REGISTER_PRIM2ORIG('slice_assign_p') def slice_assign_prim2orig(op, x, y): x_copy = paddle.assign(x) return set_value( x_copy, y, axis=op.attr('axis'), starts=op.attr('starts'), ends=op.attr('ends'), strides=op.attr('strides'), out=x_copy, ) @REGISTER_PRIM2ORIG('gather_p') def gather_prim2orig(op, index_t, x): return paddle.gather(x, index_t, axis=op.attr('axis')) @REGISTER_PRIM2ORIG('scatter_add_p') def scatter_add_prim2orig(op, index_t, x, y): assert op.attr('axis') == 0, 'Only support axis==0 currently' zeros = paddle.zeros_like(x=x, dtype=x.dtype) tmp = paddle.scatter(x=zeros, index=index_t, updates=y, overwrite=False) return paddle.add(x, tmp) @REGISTER_PRIM2ORIG('fill_constant_p') def fill_constant_prim2orig(op): return paddle.full( shape=op.attr('shape'), fill_value=op.attr('value'), dtype=INT_DTYPE_2_STRING[op.attr('dtype')], ) @REGISTER_PRIM2ORIG('bernoulli_p') def bernoulli_prim2orig(op): t = paddle.full( shape=op.attr('shape'), fill_value=op.attr('p'), dtype=INT_DTYPE_2_STRING[op.attr('dtype')], ) return paddle.bernoulli(t) @REGISTER_PRIM2ORIG('uniform_random_p') def uniform_random_prim2orig(op): return paddle.uniform( shape=op.attr('shape'), dtype=INT_DTYPE_2_STRING[op.attr('dtype')], min=op.attr('min'), max=op.attr('max'), seed=op.attr('seed'), ) @REGISTER_PRIM2ORIG('select_p') def select_prim2orig(op, condition, x, y): return paddle.where(condition, x, y) @REGISTER_PRIM2ORIG('eq_p') def eq_prim2orig(op, x, y): return paddle.equal(x, y) @REGISTER_PRIM2ORIG('gt_p') def gt_prim2orig(op, x, y): return paddle.greater_than(x, y) @REGISTER_PRIM2ORIG('ge_p') def ge_prim2orig(op, x, y): return paddle.greater_equal(x, y) @REGISTER_PRIM2ORIG('ne_p') def ne_prim2orig(op, x, y): return paddle.not_equal(x, y) @REGISTER_PRIM2ORIG('pow_p') def pow_prim2orig(op, x, y): return paddle.pow(x, y) @REGISTER_PRIM2ORIG('max_p') def max_prim2orig(op, x, y): return paddle.maximum(x, y) @REGISTER_PRIM2ORIG('cast_p') def cast_prim2orig(op, x): return paddle.cast(x, paddle.dtype(op.attr('dtype'))) # Register linearize rules @REGISTER_JVP('add_p') def add_jvp(op, x_dot, y_dot): if x_dot is None: return y_dot elif y_dot is None: return x_dot else: return linear_jvp(op, x_dot, y_dot) @REGISTER_JVP('sub_p') def sub_jvp(op, x_dot, y_dot): if x_dot is None: return neg(y_dot) elif y_dot is None: return x_dot else: return linear_jvp(op, x_dot, y_dot) @REGISTER_JVP('mul_p') def mul_jvp(op, x_dot, y_dot): if x_dot is None and y_dot is None: return None x, y = op_position_inputs(op) if x_dot is None: return mul(x, y_dot) elif y_dot is None: return mul(x_dot, y) else: t1, t2 = mul(x_dot, y), mul(x, y_dot) z_dot = add(t1, t2) return z_dot @REGISTER_JVP('div_p') def div_jvp(op, x_dot, y_dot): if x_dot is None and y_dot is None: return None x, y = op_position_inputs(op) if y_dot is None: return div(x_dot, y) elif x_dot is None: return neg(div(mul(x, y_dot), mul(y, y))) else: t1 = div(x_dot, y) t2 = div(mul(x, y_dot), mul(y, y)) return sub(t1, t2) @REGISTER_JVP('sqrt_p') def sqrt_jvp(op, x_dot): if x_dot is None: return None y = op_position_output(op) c2 = fill_const(value=2.0, shape=y.shape, dtype=y.dtype) y_dot = div(x_dot, mul(c2, y)) return y_dot @REGISTER_JVP('tanh_p') def tanh_jvp(op, x_dot): if x_dot is None: return None y = op_position_output(op) c1 = fill_const(value=1.0, shape=y.shape, dtype=y.dtype) y_dot = mul(x_dot, sub(c1, mul(y, y))) return y_dot @REGISTER_JVP('sin_p') def sin_jvp(op, x_dot): if x_dot is None: return None (x,) = op_position_inputs(op) return mul(x_dot, cos(x)) @REGISTER_JVP('cos_p') def cos_jvp(op, x_dot): if x_dot is None: return None (x,) = op_position_inputs(op) return mul(x_dot, neg(sin(x))) @REGISTER_JVP('exp_p') def exp_jvp(op, x_dot): if x_dot is None: return None y = op_position_output(op) return mul(x_dot, y) @REGISTER_JVP('erf_p') def erf_jvp(op, x_dot): if x_dot is None: return None (x,) = op_position_inputs(op) return mul( fill_const(2.0 / math.sqrt(math.pi), x.shape, x.dtype), mul(x_dot, exp(neg(primops.pow(x, fill_const(2.0, x.shape, x.dtype))))), ) @REGISTER_JVP('abs_p') def abs_jvp(op, x_dot): if x_dot is None: return None (x,) = op_position_inputs(op) return select(ge(x, fill_const(0.0, x.shape, x.dtype)), x_dot, neg(x_dot)) @REGISTER_JVP('log_p') def log_jvp(op, x_dot): if x_dot is None: return None (x,) = op_position_inputs(op) return div(x_dot, x) @REGISTER_JVP('reshape_p') def reshape_jvp(op, x_dot): if x_dot is None: return None shape = op.attr('shape') return linear_jvp(op, x_dot, shape=shape) @REGISTER_JVP('broadcast_p') def broadcast_jvp(op, x_dot): if x_dot is None: return None shape = op.attr('shape') return linear_jvp(op, x_dot, shape=shape) @REGISTER_JVP('transpose_p') def transpose_jvp(op, x_dot): if x_dot is None: return None axis = op.attr('axis') return linear_jvp(op, x_dot, axis=axis) @REGISTER_JVP('split_p') def split_jvp(op, x_dot): if x_dot is None: return None num_or_sections = op.attr('num_or_sections') axis = op.attr('axis') return linear_jvp(op, x_dot, num_or_sections=num_or_sections, axis=axis) @REGISTER_JVP('concat_p') def concat_jvp(op, xs_dot): if xs_dot is None: return None axis = op.attr('axis') return linear_jvp(op, xs_dot, axis=axis) @REGISTER_JVP('reduce_sum_p') def reduce_sum_jvp(op, x_dot): if x_dot is None: return None axis = op.attr('axis') keepdim = op.attr('keepdim') return linear_jvp(op, x_dot, axis=axis, keepdim=keepdim) @REGISTER_JVP('matmul_p') def matmul_jvp(op, x_dot, y_dot): if x_dot is None and y_dot is None: return None x, y = op_position_inputs(op) if x_dot is None: return matmul(x, y_dot) elif y_dot is None: return matmul(x_dot, y) else: t1 = matmul(x, y_dot) t2 = matmul(x_dot, y) return add(t1, t2) @REGISTER_JVP('slice_select_p') def slice_select_jvp(op, x_dot): if x_dot is None: return x_dot axis = op.attr('axis') starts = op.attr('starts') ends = op.attr('ends') strides = op.attr('strides') return linear_jvp( op, x_dot, axis=axis, starts=starts, ends=ends, strides=strides ) @REGISTER_JVP('slice_assign_p') def slice_assign_jvp(op, x_dot, y_dot): x, y = op_position_inputs(op) assert ( x_dot is not None or y_dot is not None ), "x_dot and y_dot can't be None at the same time. " axis = op.attr('axis') starts = op.attr('starts') ends = op.attr('ends') strides = op.attr('strides') if x_dot is None: return linear_jvp( op, fill_const(value=0.0, shape=x.shape, dtype=x.dtype), y_dot, axis=axis, starts=starts, ends=ends, strides=strides, ) elif y_dot is None: return linear_jvp( op, x_dot, fill_const(value=0.0, shape=y.shape, dtype=y.dtype), axis=axis, starts=starts, ends=ends, strides=strides, ) return add( linear_jvp( op, fill_const(value=0.0, shape=x.shape, dtype=x.dtype), y_dot, axis=axis, starts=starts, ends=ends, strides=strides, ), linear_jvp( op, x_dot, fill_const(value=0.0, shape=y.shape, dtype=y.dtype), axis=axis, starts=starts, ends=ends, strides=strides, ), ) @REGISTER_JVP('gather_p') def gather_jvp(op, x_dot, indextensor): if x_dot is None: return None _, indextensor = op_position_inputs(op) axis = op.attr('axis') return linear_jvp(op, x_dot, indextensor, axis=axis) @REGISTER_JVP('scatter_add_p') def scatter_add_jvp(op, x_dot, y_dot): if x_dot is None: return None _, _, indextensor = op_position_inputs(op) axis = op.attr('axis') return linear_jvp(op, x_dot, y_dot, indextensor, axis=axis) @REGISTER_JVP('select_p') def select_jvp(op, cond_dot, x_dot, y_dot): if x_dot is None and y_dot is None: return None cond, x, y = op_position_inputs(op) if x_dot is None: x_dot = fill_const(value=0.0, shape=y.shape, dtype=y.dtype) if y_dot is None: y_dot = fill_const(value=0.0, shape=y.shape, dtype=y.dtype) return select(cond, x_dot, y_dot) @REGISTER_JVP('eq_p') def eq_jvp(op, x_dot, y_dot): if x_dot is None and y_dot is None: return None x, _ = op_position_inputs(op) z_dot = fill_const(value=0.0, shape=x.shape, dtype=x.dtype) return z_dot @REGISTER_JVP('gt_p') def gt_jvp(op, x_dot, y_dot): if x_dot is None and y_dot is None: return None x, _ = op_position_inputs(op) z_dot = fill_const(value=0.0, shape=x.shape, dtype=x.dtype) return z_dot @REGISTER_JVP('ge_p') def ge_jvp(op, x_dot, y_dot): if x_dot is None and y_dot is None: return None x, _ = op_position_inputs(op) z_dot = fill_const(value=0.0, shape=x.shape, dtype=x.dtype) return z_dot @REGISTER_JVP('ne_p') def ne_jvp(op, x_dot, y_dot): if x_dot is None and y_dot is None: return None x, _ = op_position_inputs(op) z_dot = fill_const(value=0.0, shape=x.shape, dtype=x.dtype) return z_dot @REGISTER_JVP('pow_p') def pow_jvp(op, x_dot, y_dot): def _compute_t1(x, y): zero_y = fill_const(value=0.0, shape=y.shape, dtype=y.dtype) one_y = fill_const(value=1.0, shape=y.shape, dtype=y.dtype) cond = eq(y, zero_y) new_y = select(cond, one_y, sub(y, one_y)) t1 = mul(x_dot, mul(y, primops.pow(x, new_y))) return t1 if x_dot is None and y_dot is None: return None x, y = op_position_inputs(op) z = op_position_output(op) if y_dot is None: return _compute_t1(x, y) elif x_dot is None: return mul(y_dot, mul(log(x), z)) else: t1, t2 = _compute_t1(x, y), mul(y_dot, mul(log(x), z)) z_dot = add(t1, t2) return z_dot @REGISTER_JVP('max_p') def max_jvp(op, x_dot, y_dot): if x_dot is None and y_dot is None: return None x, y = op_position_inputs(op) z = op_position_output(op) z_zeros = fill_const(value=0.0, shape=z.shape, dtype=z.dtype) # To make the grad of max_p consistent with paddle.maximum when x==y, # we just let z_dot = y_dot when compute z_dot to y and x==y, # instead of using balance_eq like Jax. if y_dot is None: return select(eq(y, z), z_zeros, x_dot) elif x_dot is None: return select(eq(y, z), y_dot, z_zeros) else: return select(eq(y, z), y_dot, x_dot) @REGISTER_JVP('cast_p') def cast_jvp(op, x_dot): y = op_position_output(op) return primops.cast(x_dot, y.dtype) @REGISTER_JVP('rsqrt_p') def rsqrt_jvp(op, x_dot): if x_dot is None: return None y = op_position_output(op) x = op_position_inputs(op) c2 = fill_const(value=-2.0, shape=y.shape, dtype=y.dtype) y_dot = mul(x_dot, div(div(y, x), c2)) return y_dot # Register transpose rules @REGISTER_TRANSPOSE('add_p') def add_transpose(op, check_dot, z_bar): x, y = op_position_inputs(op) assert check_dot(x) or check_dot(y), ( f'(check_dot(x) or check_dot(y)) must be True, ' f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.' ) x_bar = z_bar if check_dot(x) else None y_bar = z_bar if check_dot(y) else None return x_bar, y_bar @REGISTER_TRANSPOSE('sub_p') def sub_transpose(op, check_dot, z_bar): x, y = op_position_inputs(op) assert check_dot(x) or check_dot(y), ( f'(check_dot(x) or check_dot(y)) must be True, ' f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.' ) x_bar = z_bar if check_dot(x) else None y_bar = neg(z_bar) if check_dot(y) else None return x_bar, y_bar @REGISTER_TRANSPOSE('mul_p') def mul_transpose(op, check_dot, z_bar): x, y = op_position_inputs(op) assert check_dot(x) ^ check_dot(y), ( f'(check_dot(x) ^ check_dot(y)) must be True, ' f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.' ) if check_dot(x): return mul(z_bar, y), None else: return None, mul(x, z_bar) @REGISTER_TRANSPOSE('div_p') def div_transpose(op, check_dot, z_bar): x, y = op_position_inputs(op) assert not check_dot(y), 'check_dot(y) must be False' x_bar = div(z_bar, y) if check_dot(x) else None return x_bar, None @REGISTER_TRANSPOSE('reshape_p') def reshape_transpose(op, check_dot, y_bar): (x,) = op_position_inputs(op) assert check_dot(x), 'check_dot(x) must be True' return reshape(y_bar, shape=x.shape) @REGISTER_TRANSPOSE('broadcast_p') def broadcast_transpose(op, check_dot, y_bar): (x,) = op_position_inputs(op) assert check_dot(x), 'check_dot(x) must be True' bat = len(y_bar.shape) - len(x.shape) axis = list(range(bat)) keepdim = [(bat + i) for i, s in enumerate(x.shape) if s == 1] axis += keepdim # TODO: Change it. keepdim boolean out = reduce_sum(y_bar, axis=axis, keepdim=False) return reshape(out, x.shape) @REGISTER_TRANSPOSE('transpose_p') def transpose_transpose(op, check_dot, y_bar): (x,) = op_position_inputs(op) assert check_dot(x), 'check_dot(x) must be True' axis = op.attr('axis') reordered = sorted((k, i) for i, k in enumerate(axis)) axis = [i for k, i in reordered] return transpose(y_bar, axis=axis) @REGISTER_TRANSPOSE('split_p') def split_transpose(op, check_dot, ys_bar): (x,) = op_position_inputs(op) assert check_dot(x), 'check_dot(x) must be True' return concat(ys_bar, axis=op.attr('axis')) @REGISTER_TRANSPOSE('concat_p') def concat_transpose(op, check_dot, y_bar): (xs,) = op_position_inputs(op) if not isinstance(xs, typing.Sequence): xs = [xs] for x in xs: assert check_dot(x), 'check_dot(x) must be True' axis = op.attr('axis') sections = [x.shape[axis] for x in xs] if len(sections) == 1: return y_bar return split(y_bar, num_or_sections=sections, axis=axis) @REGISTER_TRANSPOSE('reduce_sum_p') def reduce_sum_transpose(op, check_dot, y_bar): (x,) = op_position_inputs(op) assert check_dot(x), 'check_dot(x) must be True' axes = op.attr('axis') shape = tuple(1 if i in axes else size for i, size in enumerate(x.shape)) t = reshape(y_bar, shape=shape) return broadcast(t, shape=x.shape) @REGISTER_TRANSPOSE('matmul_p') def matmul_transpose(op, check_dot, z_bar): x, y = op_position_inputs(op) assert check_dot(x) ^ check_dot(y), ( f'(check_dot(x) ^ check_dot(y)) must be True, ' f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.' ) # TODO: replace it. this is hacky axis = [1, 0] if len(x.shape) == 2 else [0, 2, 1] if check_dot(x): return matmul(z_bar, transpose(y, axis=axis)), None else: return None, matmul(transpose(x, axis=axis), z_bar) @REGISTER_TRANSPOSE('slice_select_p') def slice_select_transpose(op, check_dot, y_bar): (x,) = op_position_inputs(op) assert check_dot(x), 'check_dot(x) must be True' zeros = fill_const(value=0.0, shape=x.shape, dtype=x.dtype) axis = op.attr('axis') starts = op.attr('starts') ends = op.attr('ends') strides = op.attr('strides') return slice_assign( zeros, y_bar, axis=axis, starts=starts, ends=ends, strides=strides ) @REGISTER_TRANSPOSE('slice_assign_p') def slice_assign_transpose(op, check_dot, z_bar): x, y = op_position_inputs(op) assert check_dot(x) ^ check_dot(y), ( f'(check_dot(x) ^ check_dot(y)) must be True, ' f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.' ) zeros = fill_const(value=0.0, shape=y.shape, dtype=y.dtype) axis = op.attr('axis') starts = op.attr('starts') ends = op.attr('ends') strides = op.attr('strides') if check_dot(x): return ( slice_assign( z_bar, zeros, axis=axis, starts=starts, ends=ends, strides=strides, ), None, ) return None, slice_select( z_bar, axis=axis, starts=starts, ends=ends, strides=strides ) @REGISTER_TRANSPOSE('gather_p') def gather_transpose(op, check_dot, y_bar): x, indextensor = op_position_inputs(op) assert check_dot(x), 'check_dot(x) must be True' axis = op.attr('axis') zeros = fill_const(0.0, x.shape, x.dtype) x_bar = scatter_add(zeros, y_bar, indextensor, axis=axis) indextensor_bar = None return x_bar, indextensor_bar @REGISTER_TRANSPOSE('scatter_add_p') def scatter_add_transpose(op, check_dot, z_bar): x, y, indextensor = op_position_inputs(op) assert check_dot(x) and check_dot(y), ( f'(check_dot(x) and check_dot(y)) must be True, ' f'but check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.' ) axis = op.attr('axis') zeros = fill_const(value=0.0, shape=y.shape, dtype=y.dtype) x_bar = scatter_add(z_bar, zeros, indextensor, axis=axis) y_bar = gather(z_bar, indextensor, axis=axis) indextensor_bar = None return x_bar, y_bar, indextensor_bar @REGISTER_TRANSPOSE('select_p') def select_transpose(op, check_dot, z_bar): cond, x, y = op_position_inputs(op) assert check_dot(cond) or check_dot(x) or check_dot(y), ( f'check_dot(cond) ^ (check_dot(x) ^ check_dot(y)) must be True, ' f'but check_dot(cond)={check_dot(cond)}, check_dot(x)={check_dot(x)} and check_dot(y)={check_dot(y)}.' ) zeros_x = fill_const(value=0.0, shape=x.shape, dtype=x.dtype) zeros_y = fill_const(value=0.0, shape=y.shape, dtype=y.dtype) cond_bar = ( fill_const(value=0.0, shape=y.shape, dtype=cond.dtype) if check_dot(cond) else None ) x_bar = select(cond, z_bar, zeros_x) if check_dot(x) else None y_bar = select(cond, zeros_y, z_bar) if check_dot(y) else None return cond_bar, x_bar, y_bar @REGISTER_TRANSPOSE('cast_p') def cast_transpose(op, check_dot, y_bar): (x,) = op_position_inputs(op) return primops.cast(y_bar, x.dtype)