.. _how_to_install:
安装说明
^^^^^^^^
若您的系统为Linux或Windows,您可以使用我们提供的安装包来安装PaddlePaddle。
对于MacOS系统,我们暂未提供安装包,您可以使用从源码编译的方式安装。
.. _install_linux:
在Linux安装PaddlePaddle
--------
推荐您使用 `pip `_
安装,它是Linux系统下最简单的安装方式。
注意事项:
- PaddlePaddle Python API 依赖Python 2.7版本。
执行下面的命令即可在当前机器上安装PaddlePaddle的运行时环境,并自动下载安装依赖软件。
.. code-block:: bash
pip install paddlepaddle
您可以通过指定版本号来安装其它版本,例如:
.. code-block:: bash
pip install paddlepaddle==0.13.0
如果需要安装支持GPU的版本(cuda9.0_cudnn7_avx_openblas),需要执行:
.. code-block:: bash
pip install paddlepaddle-gpu
PaddlePaddle针对不同需求提供了更多版本的安装包,部分列表如下:
================================= ========================================
版本号 版本说明
================================= ========================================
paddlepaddle-gpu==0.14.0 使用CUDA 9.0和cuDNN 7编译的0.14.0版本
paddlepaddle-gpu==0.14.0.post87 使用CUDA 8.0和cuDNN 7编译的0.14.0版本
paddlepaddle-gpu==0.14.0.post85 使用CUDA 8.0和cuDNN 5编译的0.14.0版本
paddlepaddle-gpu==0.13.0 使用CUDA 9.0和cuDNN 7编译的0.13.0版本
paddlepaddle-gpu==0.12.0 使用CUDA 8.0和cuDNN 5编译的0.12.0版本
paddlepaddle-gpu==0.11.0.post87 使用CUDA 8.0和cuDNN 7编译的0.11.0版本
paddlepaddle-gpu==0.11.0.post8 使用CUDA 8.0和cuDNN 5编译的0.11.0版本
paddlepaddle-gpu==0.11.0 使用CUDA 7.5和cuDNN 5编译的0.11.0版本
================================= ========================================
您可以在 `Release History `_
中找到paddlepaddle-gpu的各个发行版本。
如果需要获取并安装最新的(开发分支)PaddlePaddle,可以从我们的CI系统中下载最新的whl
安装包和c-api开发包并安装,您可以从下面的表格中找到需要的版本:
如果在点击下面链接时出现如下登陆界面,点击“Log in as guest”即可开始下载:
.. image:: paddleci.png
:scale: 50 %
:align: center
.. csv-table:: 各个版本最新的whl包
:header: "版本说明", "cp27-cp27mu", "cp27-cp27m"
:widths: 1, 3, 3
"cpu_avx_mkl", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl `__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl `__"
"cpu_avx_openblas", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl `__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl `__"
"cpu_noavx_openblas", "`paddlepaddle-latest-cp27-cp27mu-linux_x86_64.whl `__", "`paddlepaddle-latest-cp27-cp27m-linux_x86_64.whl `_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl `__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl `__"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl `__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl `__"
"cuda9.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-latest-cp27-cp27mu-linux_x86_64.whl `__", "`paddlepaddle_gpu-latest-cp27-cp27m-linux_x86_64.whl `__"
.. _FAQ:
安装常见问题和解决方法
======================
- paddlepaddle*.whl is not a supported wheel on this platform.
出现这个问题的主要原因是,没有找到和当前系统匹配的paddlepaddle安装包。
请检查Python版本是否为2.7系列。另外最新的pip官方源中的安装包默认是manylinux1标准,
需要使用最新的pip (>9.0.0) 才可以安装。
可以使用下面的命令更新您的pip:
.. code-block:: bash
pip install --upgrade pip
如果仍然存在问题,可以执行:
.. code-block:: bash
python -c "import pip; print(pip.pep425tags.get_supported())"
获取当前系统支持的安装包格式,并检查和需安装的包是否匹配。pypi安装包
可以在 `这里 `_ 找到。
如果系统支持的是 linux_x86_64 而安装包是 manylinux1_x86_64 ,需要升级pip版本到最新;
如果系统支持 manylinux1_x86_64 而安装包(本地)是 linux_x86_64,
可以重命名这个whl包为 manylinux1_x86_64 再安装。
.. _install_windows:
在windows安装PaddlePaddle
------------------------------
若您的系统为windows,您可以通过Docker来使用PaddlePaddle。
推荐您下载 `PaddlePaddle快速安装包 `_,
该安装包能够帮助您判断、安装适合的Docker,并引导您在Docker中使用PaddlePaddle。
注意事项:
* 系统要求:windows7, windows8和 windows10(windows10-家庭版不适用)。
* 下载安装包后,请您右键start.bat,选择“以管理员身份运行”。
* PaddlePaddle不支持在windows使用GPU。
* 请确认您的机器已在BIOS中开启虚拟化功能。
Docker安装完成后,请您执行下面的步骤:
请您右键选择”以管理员身份运行“,来启动Docker客户端
我们为您提供了Ubuntu 16和CentOS 7两种镜像,您可以选择其一
获取0.13.0版Docker image(Ubuntu 16)
.. code-block:: bash
docker pull paddlepaddle/paddlepaddle_cpu_ubuntu16
获取0.13.0版Docker image (CentOS 7)
.. code-block:: bash
docker pull paddlepaddle/paddlepaddle_cpu_centos7
然后执行以下命令:
获取Image ID
.. code-block:: bash
docker images
启动Docker
.. code-block:: bash
docker run -d it -t imageid /bin/bash
获取Docker Container
.. code-block:: bash
docker ps -a
进入Container
.. code-block:: bash
docker attach container
.. _install_mac:
在MacOS安装PaddlePaddle
--------
对于MacOS系统,我们暂未提供pip安装方式,您可以使用从源码编译的方式安装。
.. _others:
其他安装方式
-------------
.. _source:
从源码编译
==========
.. _requirements:
需要的软硬件
"""""""""""""
为了编译PaddlePaddle,我们需要
1. 一台电脑,可以装的是 Linux, Windows 或者 MacOS 操作系统
2. Docker
不需要依赖其他任何软件了。即便是 Python 和 GCC 都不需要,因为我们会把所有编译工具都安装进一个 Docker 镜像里。
.. _build_step:
编译方法
"""""""""""""
PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安装编译依赖的步骤,可选的不同编译环境Docker镜像
可以在 `这里 `_ 找到。或者
参考下述可选步骤,从源码中构建用于编译PaddlePaddle的Docker镜像。
如果您选择不使用Docker镜像,则需要在本机安装下面章节列出的 `附录:编译依赖`_ 之后才能开始编译的步骤。
编译PaddlePaddle,需要执行:
.. code-block:: bash
# 1. 获取源码
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
# 2. 可选步骤:源码中构建用于编译PaddlePaddle的Docker镜像
docker build -t paddle:dev .
# 3. 执行下面的命令编译CPU-Only的二进制
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x /paddle/paddle/scripts/paddle_build.sh build
# 4. 或者也可以使用为上述可选步骤构建的镜像(必须先执行第2步)
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddle:dev
注:上述命令把当前目录(源码树根目录)映射为 container 里的 :code:`/paddle` 目录。如果使用自行
构建的镜像(上述第4步)会执行 :code:`Dockerfile` 描述的默认入口程序 :code:`docker_build.sh` 可以省略步骤3中
最后的执行脚本的命令。
编译完成后会在build/python/dist目录下生成输出的whl包,可以选在在当前机器安装也可以拷贝到目标机器安装:
.. code-block:: bash
pip install build/python/dist/*.whl
如果机器中已经安装过PaddlePaddle,有两种方法:
.. code-block:: bash
1. 先卸载之前的版本,再重新安装
pip uninstall paddlepaddle
pip install build/python/dist/*.whl
2. 直接升级到更新的版本
pip install build/python/dist/*.whl -U
.. _run_test:
执行单元测试
"""""""""""""
如果您期望在编译完成后立即执行所有的单元测试,可以按照下面的方法:
设置 :code:`RUN_TEST=ON` 和 :code:`WITH_TESTING=ON` 就会在完成编译之后,立即执行单元测试。
开启 :code:`WITH_GPU=ON` 可以指定同时执行GPU上的单元测试。
.. code-block:: bash
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=ON" -e "RUN_TEST=ON" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x /paddle/paddle/scripts/paddle_build.sh build
如果期望执行其中一个单元测试,(比如 :code:`test_sum_op` ):
.. code-block:: bash
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=ON" -e "RUN_TEST=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x /paddle/paddle/scripts/paddle_build.sh build
cd /paddle/build
ctest -R test_sum_op -V
.. _faq_docker:
常见问题
"""""""""""""
- 什么是 Docker?
如果您没有听说 Docker,可以把它想象为一个类似 virtualenv 的系统,但是虚拟的不仅仅是 Python 的运行环境。
- Docker 还是虚拟机?
有人用虚拟机来类比 Docker。需要强调的是:Docker 不会虚拟任何硬件,Docker container 里运行的编译工具实际上都是在本机的 CPU 和操作系统上直接运行的,性能和把编译工具安装在本机运行一样。
- 为什么用 Docker?
把工具和配置都安装在一个 Docker image 里可以标准化编译环境。这样如果遇到问题,其他人可以复现问题以便帮助。
另外,对于习惯使用Windows和MacOS的开发者来说,使用Docker就不用配置交叉编译环境了。
- 可以选择不用Docker吗?
当然可以。大家可以用把开发工具安装进入 Docker image 一样的方式,把这些工具安装到本机。这篇文档介绍基于 Docker 的开发流程,是因为这个流程比其他方法都更简便。
- 学习 Docker 有多难?
理解 Docker 并不难,大概花十分钟看一下 `这篇文章 `_。
这可以帮您省掉花一小时安装和配置各种开发工具,以及切换机器时需要新安装的辛苦。别忘了 PaddlePaddle 更新可能导致需要新的开发工具。更别提简化问题复现带来的好处了。
- 可以用 IDE 吗?
当然可以,因为源码就在本机上。IDE 默认调用 make 之类的程序来编译源码,我们只需要配置 IDE 来调用 Docker 命令编译源码即可。
很多 PaddlePaddle 开发者使用 Emacs。他们在自己的 `~/.emacs` 配置文件里加两行
.. code-block:: bash
(global-set-key "\C-cc" 'compile)
(setq compile-command
"docker run --rm -it -v $(git rev-parse --show-toplevel):/paddle paddle:dev")
就可以按 `Ctrl-C` 和 `c` 键来启动编译了。
- 可以并行编译吗?
是的。我们的 Docker image 运行一个 `Bash 脚本 `_。这个脚本调用 :code:`make -j$(nproc)` 来启动和 CPU 核一样多的进程来并行编译。
- Docker 需要 sudo
如果用自己的电脑开发,自然也就有管理员权限(sudo)了。如果用公用的电脑开发,需要请管理员安装和配置好 Docker。此外,PaddlePaddle 项目在努力开始支持其他不需要 sudo 的集装箱技术,比如 rkt。
- 在 Windows/MacOS 上编译很慢
Docker 在 Windows 和 MacOS 都可以运行。不过实际上是运行在一个 Linux 虚拟机上。可能需要注意给这个虚拟机多分配一些 CPU 和内存,以保证编译高效。具体做法请参考 `这个issue `_。
- 磁盘不够
本文中的例子里, :code:`docker run` 命令里都用了 :code:`--rm` 参数,这样保证运行结束之后的 containers 不会保留在磁盘上。可以用 :code:`docker ps -a` 命令看到停止后但是没有删除的 containers。 :code:`docker build` 命令有时候会产生一些中间结果,是没有名字的 images,也会占用磁盘。可以参考 `这篇文章 `_ 来清理这些内容。
.. _compile_deps:
附录:编译依赖
"""""""""""""
PaddlePaddle编译需要使用到下面的依赖(包含但不限于),其他的依赖软件,会自动在编译时下载。
.. csv-table:: PaddlePaddle编译依赖
:header: "依赖", "版本", "说明"
:widths: 10, 15, 30
"CMake", ">=3.2", ""
"GCC", "4.8.2", "推荐使用CentOS的devtools2"
"Python", "2.7.x", "依赖libpython2.7.so"
"pip", ">=9.0", ""
"numpy", "", ""
"SWIG", ">=2.0", ""
"Go", ">=1.8", "可选"
.. _build_options:
附录:编译选项
"""""""""""""
PaddlePaddle的编译选项,包括生成CPU/GPU二进制文件、链接何种BLAS库等。
用户可在调用cmake的时候设置它们,详细的cmake使用方法可以参考
`官方文档 `_ 。
在cmake的命令行中,通过使用 ``-D`` 命令设置该类编译选项,例如:
.. code-block:: bash
cmake .. -DWITH_GPU=OFF
.. csv-table:: 编译选项说明
:header: "选项", "说明", "默认值"
:widths: 1, 7, 2
"WITH_GPU", "是否支持GPU", "ON"
"WITH_C_API", "是否仅编译CAPI", "OFF"
"WITH_DOUBLE", "是否使用双精度浮点数", "OFF"
"WITH_DSO", "是否运行时动态加载CUDA动态库,而非静态加载CUDA动态库。", "ON"
"WITH_AVX", "是否编译含有AVX指令集的PaddlePaddle二进制文件", "ON"
"WITH_PYTHON", "是否内嵌PYTHON解释器", "ON"
"WITH_STYLE_CHECK", "是否编译时进行代码风格检查", "ON"
"WITH_TESTING", "是否开启单元测试", "OFF"
"WITH_DOC", "是否编译中英文文档", "OFF"
"WITH_SWIG_PY", "是否编译PYTHON的SWIG接口,该接口可用于预测和定制化训练", "Auto"
"WITH_GOLANG", "是否编译go语言的可容错parameter server", "OFF"
"WITH_MKL", "是否使用MKL数学库,如果为否则是用OpenBLAS", "ON"
BLAS
+++++
PaddlePaddle支持 `MKL `_ 和
`OpenBlAS `_ 两种BLAS库。默认使用MKL。如果使用MKL并且机器含有AVX2指令集,
还会下载MKL-DNN数学库,详细参考 `这里 `_ 。
如果关闭MKL,则会使用OpenBLAS作为BLAS库。
CUDA/cuDNN
+++++++++++
PaddlePaddle在编译时/运行时会自动找到系统中安装的CUDA和cuDNN库进行编译和执行。
使用参数 :code:`-DCUDA_ARCH_NAME=Auto` 可以指定开启自动检测SM架构,加速编译。
PaddlePaddle可以使用cuDNN v5.1之后的任何一个版本来编译运行,但尽量请保持编译和运行使用的cuDNN是同一个版本。
我们推荐使用最新版本的cuDNN。
编译选项的设置
++++++++++++++
PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/cuDNN库。cmake编译时,首先在系统路径( :code:`/usr/lib:/usr/local/lib` )中搜索这几个库,同时也会读取相关路径变量来进行搜索。 通过使用 ``-D`` 命令可以设置,例如
.. code-block:: bash
cmake .. -DWITH_GPU=ON -DWITH_TESTING=OFF -DCUDNN_ROOT=/opt/cudnnv5
**注意:这几个编译选项的设置,只在第一次cmake的时候有效。如果之后想要重新设置,推荐清理整个编译目录(** :code:`rm -rf` )**后,再指定。**
.. _install_docker:
使用Docker安装运行
==================
使用Docker安装和运行PaddlePaddle可以无需考虑依赖环境。
您可以在 `Docker官网 `_
获得基本的Docker安装和使用方法。
在了解Docker的基本使用方法之后,即可开始下面的步骤:
.. _docker_pull:
获取PaddlePaddle的Docker镜像
""""""""""""""""""""""""""""
执行下面的命令获取最新的PaddlePaddle Docker镜像,版本为cpu_avx_mkl:
.. code-block:: bash
docker pull paddlepaddle/paddle
对于国内用户,我们提供了加速访问的镜像源:
.. code-block:: bash
docker pull docker.paddlepaddlehub.com/paddle
下载GPU版本(cuda8.0_cudnn5_avx_mkl)的Docker镜像:
.. code-block:: bash
docker pull paddlepaddle/paddle:latest-gpu
docker pull docker.paddlepaddlehub.com/paddle:latest-gpu
选择下载使用不同的BLAS库的Docker镜像:
.. code-block:: bash
# 默认是使用MKL的镜像
docker pull paddlepaddle/paddle
# 使用OpenBLAS的镜像
docker pull paddlepaddle/paddle:latest-openblas
下载指定版本的Docker镜像,可以从 `DockerHub网站 `_ 获取可选的tag,并执行下面的命令:
.. code-block:: bash
docker pull paddlepaddle/paddle:[tag]
# 比如:
docker pull docker.paddlepaddlehub.com/paddle:0.11.0-gpu
.. _docker_run:
在Docker中执行PaddlePaddle训练程序
"""""""""""""""""""""""""""""""""""
假设您已经在当前目录(比如在/home/work)编写了一个PaddlePaddle的程序 :code:`train.py` (可以参考
`PaddlePaddleBook `_
编写),就可以使用下面的命令开始执行训练:
.. code-block:: bash
cd /home/work
docker run -it -v $PWD:/work paddlepaddle/paddle /work/train.py
上述命令中, :code:`-it` 参数说明容器已交互式运行; :code:`-v $PWD:/work`
指定将当前路径(Linux中$PWD变量会展开为当前路径的绝对路径)挂载到容器内部的 :code:`/work`
目录; :code:`paddlepaddle/paddle` 指定需要使用的容器; 最后 :code:`/work/train.py`
为容器内执行的命令,即运行训练程序。
当然,您也可以进入到Docker容器中,以交互式的方式执行或调试您的代码:
.. code-block:: bash
docker run -it -v $PWD:/work paddlepaddle/paddle /bin/bash
cd /work
python train.py
**注:PaddlePaddle Docker镜像为了减小体积,默认没有安装vim,您可以在容器中执行** :code:`apt-get install -y vim` **安装后,在容器中编辑代码。**
.. _docker_run_book:
使用Docker启动PaddlePaddle Book教程
""""""""""""""""""""""""""""""""""""
使用Docker可以快速在本地启动一个包含了PaddlePaddle官方Book教程的Jupyter Notebook,可以通过网页浏览。
PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Notebook。
如果您想要更深入了解deep learning,PaddlePaddle Book一定是您最好的选择。
大家可以通过它阅读教程,或者制作和分享带有代码、公式、图表、文字的交互式文档。
我们提供可以直接运行PaddlePaddle Book的Docker镜像,直接运行:
.. code-block:: bash
docker run -p 8888:8888 paddlepaddle/book
国内用户可以使用下面的镜像源来加速访问:
.. code-block: bash
docker run -p 8888:8888 docker.paddlepaddlehub.com/book
然后在浏览器中输入以下网址:
.. code-block:: text
http://localhost:8888/
就这么简单,享受您的旅程!
.. _docker_run_gpu:
使用Docker执行GPU训练
""""""""""""""""""""""""""""
为了保证GPU驱动能够在镜像里面正常运行,我们推荐使用
`nvidia-docker `_ 来运行镜像。
请不要忘记提前在物理机上安装GPU最新驱动。
.. code-block:: bash
nvidia-docker run -it -v $PWD:/work paddlepaddle/paddle:latest-gpu /bin/bash
**注: 如果没有安装nvidia-docker,可以尝试以下的方法,将CUDA库和Linux设备挂载到Docker容器内:**
.. code-block:: bash
export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu
**关于AVX:**
AVX是一种CPU指令集,可以加速PaddlePaddle的计算。最新的PaddlePaddle Docker镜像默认
是开启AVX编译的,所以,如果您的电脑不支持AVX,需要单独
`编译 <./build_from_source_cn.html>`_ PaddlePaddle为no-avx版本。
以下指令能检查Linux电脑是否支持AVX:
.. code-block:: bash
if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
如果输出是No,就需要选择使用no-AVX的镜像