// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wall" #include // NOLINT #pragma GCC diagnostic pop namespace paddle { namespace inference { namespace lite { struct EngineConfig { std::string model; std::string param; std::vector valid_places; std::vector neglected_passes; lite_api::LiteModelType model_type{lite_api::LiteModelType::kProtobuf}; bool model_from_memory{true}; // TODO(wilber): now only works for xpu, lite gpu can support device_id or // not? int device_id = 0; // for xpu size_t xpu_l3_size{0}; bool xpu_l3_locked = false; bool xpu_conv_autotune = true; std::string xpu_conv_autotune_file = ""; std::string xpu_transformer_encoder_precision = "int16"; bool xpu_transformer_encoder_adaptive_seqlen = false; bool xpu_enable_multi_stream = false; // for x86 or arm int cpu_math_library_num_threads{1}; // for cuda bool use_multi_stream{false}; // for nnadapter or npu. std::string nnadapter_model_cache_dir; std::vector nnadapter_device_names; std::string nnadapter_context_properties; std::string nnadapter_subgraph_partition_config_buffer; std::string nnadapter_subgraph_partition_config_path; std::vector nnadapter_model_cache_token; std::vector> nnadapter_model_cache_buffer; bool use_opencl{}; std::string opencl_bin_path = "./"; std::string opencl_bin_name = "lite_opencl_kernel.bin"; paddle::lite_api::CLTuneMode opencl_tune_mode{}; paddle::lite_api::CLPrecisionType opencl_precision_type{}; }; class EngineManager { public: bool Empty() const; bool Has(const std::string& name) const; paddle::lite_api::PaddlePredictor* Get(const std::string& name) const; paddle::lite_api::PaddlePredictor* Create(const std::string& name, const EngineConfig& cfg); void DeleteAll(); private: std::unordered_map> engines_; }; } // namespace lite } // namespace inference } // namespace paddle