# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest import numpy as np import paddle class TestNanInfDirCheckResult(unittest.TestCase): def generate_inputs(self, shape, dtype="float32"): data = np.random.random(size=shape).astype(dtype) # [-10, 10) x = (data * 20 - 10) * np.random.randint( low=0, high=2, size=shape ).astype(dtype) y = np.random.randint(low=0, high=2, size=shape).astype(dtype) return x, y def get_reference_num_nan_inf(self, x): out = np.log(x) num_nan = np.sum(np.isnan(out)) num_inf = np.sum(np.isinf(out)) print("[reference] num_nan={}, num_inf={}".format(num_nan, num_inf)) return num_nan, num_inf def get_num_nan_inf( self, x_np, use_cuda=True, add_assert=False, pt="nan_inf_log_dir" ): num_nan = 0 num_inf = 0 if add_assert: if use_cuda: paddle.device.set_device("gpu:0") else: paddle.device.set_device("cpu") x = paddle.to_tensor(x_np) out = paddle.log(x) sys.stdout.flush() if not use_cuda: os.path.exists(pt) num_nan = 0 num_inf = 0 for root, dirs, files in os.walk(pt): for file_name in files: if file_name.startswith('worker_cpu'): file_path = os.path.join(root, file_name) with open(file_path, "rb") as fp: for e in fp: err_str_list = ( str(e) .replace("(", " ") .replace(")", " ") .replace(",", " ") .split(" ") ) for err_str in err_str_list: if "num_nan" in err_str: num_nan = int(err_str.split("=")[1]) elif "num_inf" in err_str: num_inf = int(err_str.split("=")[1]) print( "[paddle] num_nan={}, num_inf={}".format(num_nan, num_inf) ) return num_nan, num_inf def test_num_nan_inf(self): path = "nan_inf_log_dir" paddle.fluid.core.set_nan_inf_debug_path(path) def _check_num_nan_inf(use_cuda): shape = [32, 32] x_np, _ = self.generate_inputs(shape) num_nan_np, num_inf_np = self.get_reference_num_nan_inf(x_np) add_assert = (num_nan_np + num_inf_np) > 0 num_nan, num_inf = self.get_num_nan_inf( x_np, use_cuda, add_assert, path ) if not use_cuda: assert num_nan == num_nan_np and num_inf == num_inf_np paddle.set_flags( {"FLAGS_check_nan_inf": 1, "FLAGS_check_nan_inf_level": 3} ) _check_num_nan_inf(use_cuda=False) if paddle.fluid.core.is_compiled_with_cuda(): _check_num_nan_inf(use_cuda=True) x = paddle.to_tensor([2, 3, 4], 'float32') y = paddle.to_tensor([1, 5, 2], 'float32') z = paddle.add(x, y) if __name__ == '__main__': unittest.main()