/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/plugin/prelu_op_plugin.h" namespace paddle { namespace inference { namespace tensorrt { /* * PRelu converter from fluid to tensorRT. */ class PReluOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { VLOG(4) << "convert fluid prelu op to tensorrt prelu layer"; framework::OpDesc op_desc(op, nullptr); // Declare inputs size_t input_num = op_desc.Input("X").size(); auto* input = engine_->GetITensor(op_desc.Input("X")[0]); // Get attrs std::string mode = BOOST_GET_CONST(std::string, op_desc.GetAttr("mode")); std::string data_format = "NCHW"; if (op_desc.HasAttr("data_format")) { data_format = BOOST_GET_CONST(std::string, op_desc.GetAttr("data_format")); } auto* alpha_var = scope.FindVar(op_desc.Input("Alpha")[0]); auto* alpha_tensor = alpha_var->GetMutable(); platform::CPUPlace cpu_place; std::unique_ptr alpha_tensor_temp( new framework::LoDTensor()); alpha_tensor_temp->Resize(alpha_tensor->dims()); paddle::framework::TensorCopySync( *alpha_tensor, cpu_place, alpha_tensor_temp.get()); float* alpha_data = alpha_tensor_temp->mutable_data(cpu_place); nvinfer1::ILayer* layer = nullptr; if (engine_->with_dynamic_shape()) { plugin::PReluPluginDynamic* plugin = new plugin::PReluPluginDynamic( alpha_data, alpha_tensor_temp->numel(), mode, data_format); layer = engine_->AddDynamicPlugin(&input, input_num, plugin); } else { #if IS_TRT_VERSION_GE(7000) float* alpha_weight_data = engine_->GetWeightCPUData(op_desc.Input("Alpha")[0], alpha_tensor); TensorRTEngine::Weight alpha_weight{ nvinfer1::DataType::kFLOAT, static_cast(alpha_weight_data), static_cast(alpha_tensor->numel())}; nvinfer1::Dims dims; dims.nbDims = 0; // jump batch dim for (int i = 1; i < alpha_tensor->dims().size(); i++) { dims.d[dims.nbDims++] = alpha_tensor->dims()[i]; } for (; dims.nbDims < input->getDimensions().nbDims; dims.nbDims++) { dims.d[dims.nbDims] = 1; } auto alpha_layer = TRT_ENGINE_ADD_LAYER(engine_, Constant, dims, alpha_weight.get()); auto alpha_layer_output = alpha_layer->getOutput(0); layer = TRT_ENGINE_ADD_LAYER( engine_, ParametricReLU, *input, *alpha_layer_output); #else plugin::PReluPlugin* plugin = new plugin::PReluPlugin( alpha_data, alpha_tensor_temp->numel(), mode, data_format); layer = engine_->AddPlugin(&input, input_num, plugin); #endif } // keep alpha tensor to avoid release it's memory engine_->SetWeights(op_desc.Input("Alpha")[0], std::move(alpha_tensor_temp)); auto output_name = op_desc.Output("Out")[0]; RreplenishLayerAndOutput(layer, "prelu", {output_name}, test_mode); } }; } // namespace tensorrt } // namespace inference } // namespace paddle REGISTER_TRT_OP_CONVERTER(prelu, PReluOpConverter);