# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import core import multiprocessing import framework import executor __all__ = ['ParallelExecutor'] class ParallelExecutor(object): def __init__(self, use_cuda, loss_name=None, main_program=None, num_threads=None, allow_op_delay=False, share_vars_from=None): """ ParallelExecutor can run program in parallel. Args: use_cuda(bool): Whether to use CUDA or not. loss_name(str, default None): The loss name must set in training. main_program(Program, default None): The program that need to run, if not provided, then default_main_program will be used. num_threads(int, default None): How many threads are used for training. allow_op_delay(bool, default False): Whether to delay and buffer some operators together for scheduling or not, which may improve performance in some cases, defalut False. share_vars_from(ParallelExecutor, default None): If provied, it will share variables from the specified ParallelExecutor. Returns: A ParallelExecutor object. Raises: TypeError: If share_vars_from is provided, but not ParallelExecutor object. Examples: .. code-block:: python train_exe = fluid.ParallelExecutor( use_cuda=True, loss_name=loss.name) test_exe = fluid.ParallelExecutor( use_cuda=True, main_program=test_program, share_vars_from=train_exe) train_loss, = train_exe.run([loss.name], feed_dict=feed_dict) test_loss, = test_exe.run([loss.name], feed_dict=feed_dict) """ self._places = [] self._act_places = [] if use_cuda: for i in xrange(core.get_cuda_device_count()): p = core.Place() self._act_places.append(core.CUDAPlace(i)) p.set_place(self._act_places[-1]) self._places.append(p) else: for i in xrange(multiprocessing.cpu_count()): p = core.Place() self._act_places.append(core.CPUPlace(i)) p.set_place(self._act_places[-1]) self._places.append(p) assert self._places, "no place for execution" if num_threads is None: if use_cuda: # Experiments on se-resnext shows that too many threads hurt # performance. Worth tunning for other models in the future. num_threads = len(self._places) else: min(len(self._places) * 2, multiprocessing.cpu_count()) main = main_program main = main if main else framework.default_main_program() scope = executor.global_scope() if share_vars_from and not isinstance(share_vars_from, ParallelExecutor): raise TypeError("share_vars_from must be ParallelExecutor.") local_scopes = share_vars_from.executor.local_scopes( ) if share_vars_from else [] persistable_vars = [ v.name for v in filter(lambda var: var.persistable, main.list_vars()) ] self.executor = core.ParallelExecutor( num_threads, True if use_cuda else False, # use_event self._places, set([ p.name for p in main.global_block().iter_parameters() if not p.stop_gradient ]), set(persistable_vars), main.desc, loss_name if loss_name else '', scope, local_scopes, allow_op_delay) self.scope = scope def run(self, fetch_list, feed_dict={}): """ :param fetch_list: A list of variable names that will be fetched. :param feed_dict: A dict mapping for feed variable name to LoDTensor or numpy array. :return: fetched value list. """ if not isinstance(feed_dict, dict): raise TypeError("feed_dict should be a dict") feed_tensor_dict = {} for i, feed_name in enumerate(feed_dict): feed_tensor = feed_dict[feed_name] if not isinstance(feed_tensor, core.LoDTensor): feed_tensor = core.LoDTensor() feed_tensor.set(feed_dict[feed_name], self._act_places[0]) feed_tensor_dict[feed_name] = feed_tensor fetch_var_name = '@FETCHED_VAR_NAME@' self.executor.run(fetch_list, fetch_var_name, feed_tensor_dict) arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array() return [arr[i] for i in range(len(arr))]