# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest import paddle import paddle.fluid as fluid class TestNumelOp(OpTest): def setUp(self): self.op_type = "size" self.python_api = paddle.numel self.init() x = np.random.random((self.shape)).astype("float64") self.inputs = { 'Input': x, } # TODO(zhouwei): will change shape [1] to [] to support zero-dim self.outputs = {'Out': np.array([np.size(x)])} def test_check_output(self): self.check_output() def init(self): self.shape = (6, 56, 8, 55) class TestNumelOp1(TestNumelOp): def init(self): self.shape = (11, 66) class TestNumelOp2(TestNumelOp): def init(self): self.shape = (0,) class TestNumelAPI(unittest.TestCase): def test_numel_static(self): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): shape1 = [2, 1, 4, 5] shape2 = [1, 4, 5] x_1 = paddle.fluid.data(shape=shape1, dtype='int32', name='x_1') x_2 = paddle.fluid.data(shape=shape2, dtype='int32', name='x_2') input_1 = np.random.random(shape1).astype("int32") input_2 = np.random.random(shape2).astype("int32") out_1 = paddle.numel(x_1) out_2 = paddle.numel(x_2) exe = paddle.static.Executor(place=paddle.CPUPlace()) res_1, res_2 = exe.run( feed={ "x_1": input_1, "x_2": input_2, }, fetch_list=[out_1, out_2], ) # TODO(zhouwei): will change shape [1] to [] to support zero-dim assert np.array_equal( res_1, np.array([np.size(input_1)]).astype("int64") ) assert np.array_equal( res_2, np.array([np.size(input_2)]).astype("int64") ) def test_numel_imperative(self): paddle.disable_static(paddle.CPUPlace()) input_1 = np.random.random([2, 1, 4, 5]).astype("int32") input_2 = np.random.random([1, 4, 5]).astype("int32") x_1 = paddle.to_tensor(input_1) x_2 = paddle.to_tensor(input_2) out_1 = paddle.numel(x_1) out_2 = paddle.numel(x_2) assert np.array_equal(out_1.numpy().item(0), np.size(input_1)) assert np.array_equal(out_2.numpy().item(0), np.size(input_2)) paddle.enable_static() def test_error(self): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): def test_x_type(): shape = [1, 4, 5] input_1 = np.random.random(shape).astype("int32") out_1 = paddle.numel(input_1) self.assertRaises(TypeError, test_x_type) if __name__ == '__main__': unittest.main()