# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest, convert_float_to_uint16 from scipy.special import erf import paddle import paddle.fluid.dygraph as dg from paddle import fluid class TestErfOp(OpTest): def setUp(self): self.op_type = "erf" self.prim_op_type = "prim" self.public_python_api = paddle.erf self.python_api = paddle.erf self.dtype = self._init_dtype() self.x_shape = [11, 17] x = np.random.uniform(-1, 1, size=self.x_shape).astype(self.dtype) y_ref = erf(x).astype(self.dtype) self.inputs = {'X': x} self.outputs = {'Out': y_ref} def _init_dtype(self): return "float64" def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestErfLayer(unittest.TestCase): def _test_case(self, place): x = np.random.uniform(-1, 1, size=(11, 17)).astype(np.float64) y_ref = erf(x) with dg.guard(place) as g: x_var = dg.to_variable(x) y_var = paddle.erf(x_var) y_test = y_var.numpy() np.testing.assert_allclose(y_ref, y_test, rtol=1e-05) def test_case(self): self._test_case(fluid.CPUPlace()) if fluid.is_compiled_with_cuda(): self._test_case(fluid.CUDAPlace(0)) def test_name(self): with fluid.program_guard(fluid.Program()): x = paddle.static.data('x', [3, 4]) y = paddle.erf(x, name='erf') self.assertTrue('erf' in y.name) class TestErfFP16OP(OpTest): def setUp(self): self.op_type = "erf" self.prim_op_type = "prim" self.public_python_api = paddle.erf self.python_api = paddle.erf self.dtype = np.float16 self.x_shape = [11, 17] x = np.random.uniform(-1, 1, size=self.x_shape).astype(self.dtype) y_ref = erf(x).astype(self.dtype) self.inputs = {'X': x} self.outputs = {'Out': y_ref} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) @unittest.skipIf( not paddle.fluid.core.is_compiled_with_cuda() or not paddle.fluid.core.is_bfloat16_supported( paddle.fluid.core.CUDAPlace(0) ), "core is not complied with CUDA and not support the bfloat16", ) class TestErfBF16OP(OpTest): def setUp(self): self.op_type = "erf" self.prim_op_type = "prim" self.public_python_api = paddle.erf self.python_api = paddle.erf self.dtype = np.uint16 self.x_shape = [11, 17] x = np.random.uniform(-1, 1, size=self.x_shape).astype(np.float32) y_ref = erf(x).astype(np.float32) self.inputs = {'X': convert_float_to_uint16(x)} self.outputs = {'Out': convert_float_to_uint16(y_ref)} def test_check_output(self): place = paddle.fluid.core.CUDAPlace(0) self.check_output_with_place(place) def test_check_grad(self): place = paddle.fluid.core.CUDAPlace(0) self.check_grad_with_place(place, ['X'], 'Out', check_prim=True) if __name__ == '__main__': unittest.main()