# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import unittest import numpy as np from eager_op_test import OpTest, convert_float_to_uint16 from scipy import special import paddle from paddle.fluid import core paddle.enable_static() class TestLgammaOp(OpTest): def setUp(self): self.op_type = 'lgamma' self.python_api = paddle.lgamma self.init_dtype_type() shape = (5, 20) data = np.random.random(shape).astype(self.dtype) + 1 self.inputs = {'X': data} result = np.ones(shape).astype(self.dtype) for i in range(shape[0]): for j in range(shape[1]): result[i][j] = math.lgamma(data[i][j]) self.outputs = {'Out': result} def init_dtype_type(self): self.dtype = np.float64 def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X'], 'Out', numeric_grad_delta=1e-7) class TestLgammaOpFp32(TestLgammaOp): def init_dtype_type(self): self.dtype = np.float32 def test_check_grad_normal(self): self.check_grad(['X'], 'Out', numeric_grad_delta=0.005) class TestLgammaFP16Op(TestLgammaOp): def init_dtype_type(self): self.dtype = np.float16 def test_check_grad_normal(self): self.check_grad(['X'], 'Out') @unittest.skipIf( not core.is_compiled_with_cuda() or not core.is_bfloat16_supported(core.CUDAPlace(0)), "core is not compiled with CUDA or not support bfloat16", ) class TestLgammaBF16Op(OpTest): def setUp(self): self.op_type = 'lgamma' self.python_api = paddle.lgamma self.dtype = np.uint16 shape = (5, 20) data = np.random.random(shape).astype("float32") + 1 self.inputs = {'X': convert_float_to_uint16(data)} result = np.ones(shape).astype("float32") for i in range(shape[0]): for j in range(shape[1]): result[i][j] = math.lgamma(data[i][j]) self.outputs = {'Out': convert_float_to_uint16(result)} def test_check_output(self): # After testing, bfloat16 needs to set the parameter place self.check_output_with_place(core.CUDAPlace(0)) def test_check_grad_normal(self): self.check_grad_with_place(core.CUDAPlace(0), ['X'], 'Out') class TestLgammaOpApi(unittest.TestCase): def test_lgamma(self): paddle.disable_static() self.dtype = "float32" shape = (1, 4) data = np.random.random(shape).astype(self.dtype) + 1 data_ = paddle.to_tensor(data) out = paddle.lgamma(data_) result = special.gammaln(data) np.testing.assert_allclose(result, out.numpy(), rtol=1e-05) paddle.enable_static() if __name__ == "__main__": unittest.main()